Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 5049-5051 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 57 (1996), S. 95-104 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This article presents a treatment scheme of the tunneling of hydrogen between two molecular centers (Cl…Cl). The purpose is to calculate the tunneling probabilities of hydrogen atom transfer from the initial (the proceeding complex) to the final-state energy minima (the succeeding complex) in two anharmonic vibrational states (0 → 0 and 1 → 1) in terms of the time-dependent perturbation theory expression and to see whether spectroscopic signatures of tunneling persist in the form of splittings of the vibrational modes. The analysis uses the realistic potential energy function calculated at the HF/6-31 + G** self-consistent-field basis-set level for the interaction between transferred hydrogen and its molecular skeleton (Cl…H…Cl). This potential energy surface is calibrated by comparing its properties with those from sf-POLCI and the LEPS potential-energy surfaces. The anharmonic vibrational state is characterized by the corrected vibrational energy levels and a set of linear combination coefficients obtained via perturbation theory. The tunneling probabilities for two transitions (0 → 0 and 1 → 1) were calculated and compared with those from Gamow's equation. Applicability of the time-dependent perturbation theory expression and Gamow's equation to the [Cl BOND H…Cl] system is discussed. The vibrational splitting energies are obtained, and a spectroscopic signature caused by tunneling is expected and should be observable. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 61 (1997), S. 117-126 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: On the basis of the basic feature of the electron transfer reactions, a new theoretical scheme and application of a nonempirical ab initio method in computing the inner-sphere reorganization energies (RE) of hydrated ions in electron transfer processes in solution are presented at valence STO basis (VSTO) level. The potential energy surfaces and the various molecular structural parameters for transition metal complexes are obtained using nonempirical molecular orbital (MO) calculations, and the results agree very well with experimentally observed ones from vibrational spectroscopic data. The results of inner-sphere REs obtained from these calculations via this new scheme give a good agreement with photoemission experimental findings and those from the improved self-exchange model proposed early for M2+(H2O)6/M3+(H2O)6(M = V, Cr, Mn, Fe, and Co) redox couple systems and are better than those from semiempirical INDO/II MO method and other classical methods. Further, the observed agreement of the optimized structural data and the results of inner-sphere REs of complexes with experimental findings confirms the following: (1) the validity of nonempirical MO calculation method to get accurate structural parameters and inner-sphere RE for the redox systems for which reliable vibrational spectroscopic data are not available, (2) the validity of the improved self-exchange model proposed early for inner-sphere RE, and (3) the reasonableness of some approximations adopted in this study. © 1997 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...