Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 6102-6110 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dissociative electron transfer reaction CH3Cl+e−→CH3•+Cl− in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon–chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Marcus' relationship, originally developed for electron transfer processes not involving bond breaking. We also investigated dynamical aspects by means of 60 dissociative trajectories started with the addition of an extra electron to different configurations of a methylchloride molecule in solution. The PMF shows the existence of a very flat region, in which the system is trapped during some finite time if the quantum subsystem quickly losses its excess kinetic energy transferring it to the solvent molecules. One of the most important factors determining the effectiveness of this energy transfer seems to be the existence of close contacts (hydrogen bonds) between the solute and the solvent. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...