Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 30 (1991), S. 2437-2444 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 32 (1993), S. 866-881 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 32 (1993), S. 882-893 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 249-264 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This work concerns the synthesis of nonlinear controllers for multivariable nonlinear processes that make the closed-loop system linear in an input/output sense. Necessary and sufficient conditions for input/output linearizability via static state feedback are derived as well as formulas for the feedback law. Once such a static state feedback is applied to the process, an external multivariable linear controller with integral action can control it to set point. The proposed control methodology is tested through simulations in a semibatch copolymerization reactor example.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1923-1945 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This work concerns the synthesis of discrete-time nonlinear controllers for nonlinear processes that make the closed-loop system linear in an input/output sense. The synthesis of state feedback controllers is studied first, followed by the synthesis of dynamic output feedback controllers. Both problems are solved within the globally linearizing control (GLC) framework. Precise theoretical connections between the derived controllers and model algorithmic control (MAC) are established. The theory is illustrated by a chemical reactor example.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 473-495 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This work concerns the synthesis of discrete-time feedforward/feedback control systems for general nonlinear processes with stable zero dynamics. Depending on the process under consideration, the derived feedforward/feedback controllers can completely eliminate the effect of measurable disturbances and produce a prespecified linear response with respect to a reference input, or provide integral-square error optimal response to step changes in the disturbances and a prespecified linear response with respect to a reference input. In either case, the developed feedforward/feedback controllers allow for the asymptotic rejection of unmeasurable disturbances. These controllers are derived within the globally linearizing control frame-work, first under full state information and then in the absence of state measurements. The internal stability of the closed-loop system is addressed. The derived controllers are interpreted from a model-predictive point of view, and their connections with the feedforward internal model control and the model algorithmic control are established. The theoretical results are illustrated through a continuous stirred-tank reactor example.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 980-990 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This experimental work concerns the multivariable nonlinear control of a pilotsize continuous polymerization reactor with generically singular characteristic matrix. The control problem is to control conversion and temperature in a continuous stirred tank reactor by manipulating two coordinated flow rates (reactor residence time) and two coordinated heat inputs. A nonlinear controller is synthesized within the framework of the globally linearizing control (GLC) method and is implemented on a microcomputer. Conversion is inferred from on-line measurements of density and temperature. A key feature of the control problem is that its characteristic matrix is generically singular. Singularity of the characteristic matrix is handled by using a dynamic input/output linearizing state feedback rather than a static feedback. A reduced-order observer is used to calculate the monomer, initiator, and solvent concentration estimates, which are needed for the calculation of controller action. In the presence of active state and input constraints, the reactor-startup and setpointtracking performance of the controller is evaluated through experimental runs.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 187-203 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Discrete-time nonlinear feedback control laws are derived for multivariable nonlinear processes, whose “delay-free” parts are minimum phase. These include mixed error-and state-feedback, error-feedback, and mixed error- and output-feedback laws, which can induce linear input-output closed-loop response. This study is carried out within the framework of the discrete-time globally linearizing control. The broader class of nonlinear processes, in which controlled outputs as well as some other process variables are measured, are also considered. A mixed error- and output-feedback control law is derived for this class of processes. The conditions under which the mixed error- and output-feedback can be applied to a process operating at or around an open-loop unstable equilibrium point are determined. The application and performance of the derived control laws are illustrated by the numerical simulation of a chemical reactor.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1429-1448 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This work studies the experimental application of the globally linearizing control (GLC) method to a batch polymerization reactor. The nonlinear controller is implemented on a microcomputer to start up the reactor and then track a precalculated optimal temperature profile. The reactor temperature is controlled by manipulating two coordinated inputs: power to an electrical heat and cooling water flow rate. A reduced-order observer is used to estimate the concentration of initiator and monomer. Systematic tuning guidelines are proposed for the nonlinear control method. The experimental results show the excellent servo and regulatory performance of the nonlinear controller in the presence of modeling and observer initialization errors and active manipulated input constraints. Furthermore, in comparison to a conventional PID controller, the performance of the nonlinear controller is significantly superior, and its tuning is much easier.
    Additional Material: 37 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 1920-1937 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This experimental work concerns the multivariable nonlinear control of a continuous stirred-tank polymerization reactor. The globally linearizing control (GLC) method is implemented to control conversion and temperature in the reactor in which the solution polymerization of methyl methacrylate takes place. Control of conversion and temperature is achieved by manipulating the flow rate of an inlet initiator stream and two coordinated heat input variables. Conversion is inferred from on-line measurements of density and temperature. A reduced-order state observer is utilized to estimate the concentrations of monomer, initiator and solvent in the reactor. The concentration estimates are used in the control law. This study demonstrates the considerable computational efficiency of the nonlinear controller, which is implemented on a microcomputer. The experimental results show the excellent performance of the controller in the presence of active state and input constraints. A systematic approach is also given for the synthesis of output feedback controllers within the GLC framework for processes with secondary outputs.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...