Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 7 (1995), S. 859-864 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 58 (1991), S. 1208-1210 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Corrosion of YBa2Cu3O7−x pellets has been studied using magnetic levitation. Pellets compressed at green compaction pressures of 120–200 MPa were exposed to water and air and the levitation heights were measured over a period of more than a month. A model based on diffusion as a rate-controlling step has been proposed. Levitation height normalized with respect to the initial levitation height was used as the modeling parameter. The experiments indicate that the normalized levitation height decreased with time up to a certain level called the saturation leviation, beyond which there is no change in the levitation height. Samples in air degraded faster than samples in water. The initial period of degradation before saturation fits the proposed model well and therefore appears to be diffusion controlled. The saturation levitation shows a dependence on the green compaction pressure. It has been proposed that corrosion (degrading reactions) is due to open porosities which are closed by the reaction products, thus causing a saturation in the levitation height dependent on the porosities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 1097-1106 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speed calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glassceramic materials have been identified over the years which show good promise as candidate substrate materials. Among these, borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant (3.8). Sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, differential thermal analysis and Fourier transform-infrared spectroscopy have been used to characterize the as-as-prepared and heat-treated gels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 14 (1995), S. 906-908 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 4333-4339 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Chemical reactions conducted in solution are known to generate solid precursors containing molecular units that help in the formation of high-temperature phases. The structural units are created by controlling the molecular environments in solution, and as a result, phases that normally form and are stable at high temperatures can be synthesized at low or moderately elevated temperatures. However, the application of chemical approaches for synthesizing phases that normally form at high pressure are relatively unknown. In this work, a simple room-temperature aqueous chemical precipitation route has been used to synthesize the high-pressure cubic spinel modification of ZnIn2S4. A solution coordination model (SCM) has been proposed to explain the formation of the high-pressure phase. The crystallinity, phase purity and phase transformation characteristics of the cubic phase have been studied using X-ray diffraction (XRD) including Rietveld refinement, transmission electron microscopy (TEM), and Auger electron microscopy (AEM). Results of these studies are discussed in the light of a proposed solution coordination model (SCM). © 1998 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Applied Organometallic Chemistry 11 (1997), S. 163-179 
    ISSN: 0268-2605
    Keywords: sol-gel ; ceramics ; glasses ; films ; organometallic ; titanium ; niobium ; Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The advent of the sol-gel technique over the past several decades and the recognition of its excellent flexibility for synthesizing a large variety of oxide ceramics and glasses in both bulk and thin-film forms has generated considerable interest in using solution-based processes to prepare ceramic materials. Because of the success of the sol-gel technique, a number of other chemical processes have been developed utilizing metalorganic/organometallic starting materials to create molecularly architectured precursors, which have proven effective in synthesizing both oxide and non-oxide materials. In the present study, two different chemical approaches have been implemented to synthesize non-oxides (sulfides and nitrides) of reactive transition-metal elements. Accordingly, a novel thio-sol-gel process for preparing TiS2 and NbS2 powders has been studied. In the case of TiS2 synthesis, the chemical reaction has been examined in detail using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography (GC). The effects of modification of the titanium precursor on the morphology of the final sulfide have also been investigated and are discussed. A second, more generalized process has been developed for synthesizing homogeneous precursors in multicomponent systems. Its utilization in preparing ternary nitrides has been demonstrated, and is also presented. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...