Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 99-113 
    ISSN: 0271-2091
    Keywords: St. Venant equations ; Hyperbolic system ; Characteristic-dissipative-Galerkin ; Taylor-Galerkin ; Least squares finite element ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Finite element schemes for hyperbolic systems are applied to the St. Venant equations for one-dimensional, unsteady, open channel flow. The comparative performances of the characteristic-dissipative-Galerkin, Taylor-Galerkin and least squares finite element schemes are assessed by means of linear Fourier analysis and solution of idealized non-linear wave propagation problems. Of particular interest is the behaviour of these schemes for the regressive wave component in both subcritical and supercritical flows. To assess the quality of the basic solution, the methods are compared without any additional artificial diffusion or shock-capturing formulations. The balanced treatment of both wave components in the characteristic-dissipative-Galerkin method is illustrated. Also, the method displays little sensitivity to parameters variations. The Taylor-Galerkin scheme provides good solutions, although oscillations due to wave dispersion and minimal diffusion of the regressive wave are displayed. Also, this method is somewhat sensitive to the time step increment. The least squares method is considered unsuitable for unsteady, open channel flow problems owing to its inability to propagate a regressive wave in a supercritical flow.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 385-403 
    ISSN: 0271-2091
    Keywords: Upwind ; QUICK ; Petrov-Galerkin ; Convection-diffusion ; Advection ; Navier-Stokes ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Finite elements using higher-order basis functions in the spirit of the QUICK method for convection-dominated fluid flow and transport problems are introduced and demonstrated. Instead of introducing new internal degrees of freedom, completeness is achieved by including functions based on nodal values exterior and upwind to the element domain. Applied with linear test functions to the weak statements for convection-dominated problems, a family of Petrov-Galerkin finite elements is developed. Quadratic and cubic versions are demonstrated for the one-dimensional convection-diffusion test problem. Elements of up to seventh degree are used for local solution refinement. The behaviour of these elements for one-dimensional linear and non-linear advection is investigated. A two-dimensional quadratic upwind element is demonstrated in a streamfunction-vorticity formulation of the Navier-Stokes equations for a driven cavity flow test problem. With some minor reservations, these elements are recommended for further study and application.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...