Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9592
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background: Monitoring of respiratory mechanics during ventilator treatment in paediatric intensive care is currently based on pressure and flow measurements in the ventilator or at the Y-piece. The characteristics of the tracheal tube will modify the pressures affecting the airways and alveoli in an unpredictable manner. The dynostatic algorithm (DSA), based on a one-compartment lung model, calculates the alveolar pressure during on-going ventilation. The DSA is based on accurate measurement of tracheal pressure. The purpose of this study was to test the validity of the DSA in a paediatric lung model and to apply the concept in an observational clinical study in children. Methods: We validated the DSA in a paediatric lung model with linear, nonlinear pressure flow and frequency-dependent characteristics by comparing calculated dynostatic (alveolar) pressures with directly measured alveolar pressures in the model and proximal plateau pressure with maximum alveolar pressure. Sixty combinations of ventilation modes, positive end expiratory pressures, inspiratory : expiratory ratios, volumes and frequencies were studied. A 0.25-mm fibreoptic pressure transducer in the tube lumen was used in combination with volume and flow from ventilator signals.Clinical measurements were performed in eight patients during anaesthesia and postoperative ventilator treatment. Results: In the lung model we found a correlation coefficient between calculated and measured alveolar pressure of 0.93–0.99 with root mean square median values of 1 cm H2O. Distal plateau pressure agreed well with maximum alveolar pressure. In the clinical situation, the algorithm provided a breath-by-breath display of the volume-dependent lung compliance and the temporal course of alveolar pressure during uninterrupted ventilation. Conclusions: Fibreoptic measurement of tracheal pressure in combination with the dynostatic calculation of alveolar pressure provides an on-line monitoring of the effects of ventilatory mode in terms of volume-dependent compliance, tracheal peak pressure and true positive end expiratory pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of clinical monitoring and computing 9 (1993), S. 330-334 
    ISSN: 1573-2614
    Keywords: Monitoring: gas sampling ; Inhalation anesthesia: N2 elimination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine
    Description / Table of Contents: Résumé Objectifs. Notre objectif a été d'étudier le flux d'azote entre le patient, le circuit respiratoire, et les gaz en excès durant une anesthésie utilisant du protoxyde d'azote à bas débit de gaz frais.Méthodes. Quarante patients ont été étudiés. Après une période de dénitrogénation de 6 minutes avec un haut débit de gaz frais, le débit de gaz frais en oxygène a été réglé approximativement à 4ml/kg/min et le débit de gaz frais en protoxyde d'azote a été réglé pour maintenir une fraction d'oxygène inspiré de 0,3. Le débit de gaz en excès et l'élimination d'azote ont été mesurés par une variante de la méthode du sac de Douglas.Résultats. La concentration moyenne en azote inspiré a atteint un pic de 5.9% à 40 minutes. L'élimination moyenne d'azote estimée était de 39 ml/min à 10 minutes, décroissant jusqu'à 18 ml/min à 60 minutes. A partir des résultats de l'étude clinique, un calcul reposant sur le principe d'homéostasie de l'azote durant une anesthésie en circuit fermé indique que l'utilisation intermittente de haut débit de gaz frais pour dénitrogénation après prélèvement de gaz pour analyse et réintroduction dans la circuit respiratoire est inutile; par conséquent, une réelle économie en gaz pourrait être réalisée par simple élimination de l'échantillon de gaz pour analyse.Conclusion. Indépendamment du débit de gas frais utilisé, la réintroduction dans le circuit respiratoire de l'échantillon de gaz prélevé pour analyse n'est pas nécessaire lors d'une anesthésie utilisant du protoxyde d'azote.
    Abstract: Kurzfassung Ziel. Unser Ziel war die Untersuchung des Stickstoffflusses zwischen Patient, Atemkreis und Abgas bei Lachgas-Anästhesie mit niedrigem Frischgasflows.Methoden. Vierzig Patienten wurden untersucht. Nach einer 6-minütigen Stickstoffauswaschung mit hohen Frischgasflows wurde der Sauerstoff-Frischgasflow auf ungefähr 4 ml/kg/min und der Lachgas-Frischgasflow so eingestellt, daß ein inspiratorischer Sauerstoffanteil von 0,30 erhalten blieb. Der Abgasflow und die Stickstoffausscheidung wurden durch eine Variante der Beutelmethode nach Douglas gemessen.Ergebnisse. Die mittlere inspiratorische Stickstoffkonzentration erreichte einen Spitzenwert von 5,9% nach 40 Minuten. Die berechnete mittlere Stickstoffausscheidung betrug 30 ml/min nach 10 Minuten und nahm nach 60 Minuten auf 18 ml/min ab. Eine Berechnung der Stickstoff-Homöostase während der Anästhesie im geschlossenen System auf der Grundlage der Ergebnisse der Patientenstudie ergab, daß die Probenentnahme zur Gasanalyse die Gaskosten tatsächlich verringert, wenn das Probengas fortgeleitet statt zum Kreissystem zurückgeleitet wird, da ein intermittierendes Durchspülen mit einem hohen Frischgasflow zur Stickstoffauswaschung im erstgenannten Fall unnötig ist.Schlußfolgerung. Ungeachtet des verwendeten Frischgasflows braucht Probengas während der Lachgas-Anästhesie nicht zurückgeleitet zu werden.
    Notes: Abstract Objective. The purpose of this investigation was to study the N2 flux between the patient and the breathing circuit, and the excess gas during N2O anesthesia with the low, fresh gas flow technique.Methods. Forty patients were studied. After a 6-minute high, fresh gas flow denitrogenation period, the O2 fresh gas flow was set at about 4 ml/kg/min and the N2O fresh gas flow was set to maintain an inspired O2 fraction of 0.30. The excess gas flow and N2 excretion were measured by a variant of the Douglas bag method.Results. The mean inspired N2 concentration reached a peak of 5.9% at 40 minutes. The estimated mean N2 excretion was 39 ml/min at 10 minutes, declining to 18 ml/min at 60 minutes. A calculation of N2 homeostasis during closed-circuit anesthesia based on the results of the patient study indicated that sampling for gas analysis actually reduces the gas costs if the sampled gas is scavenged instead of returned to the circle system, since intermittent flushing with high, fresh gas flow for denitrogenation is unnecessary in the former situation.Conclusions. Regardless of the fresh gas flow used, sampled gas need not be returned during N2O anesthesia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of clinical monitoring and computing 14 (1998), S. 425-431 
    ISSN: 1573-2614
    Keywords: Gas density ; helium ; oxygen ; venturimeter ; measurement ; tidal volume
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine
    Notes: Abstract Objective. Mixtures of helium and oxygen are regaining a place in the treatment of obstruction of the upper and lower respiratory tract. The parenchymal changes during the course of IRDS or ARDS may also benefit from the reintroduction of helium/oxygen. In order to monitor and document the effect of low-density gas mixtures, we evaluated the Datex AS/3 Side Stream Spirometry module with D-lite® (Datex-Engstrom Instrumentarium Corporation, Finland) against two golden standards. Methods. Under conditions simulating controlled and spontaneous ventilation with gas mixtures of He (approx. 80, 50, and 20%)/O2 or N2 (approx. 21 and 79%)/O2, simultaneous measurements using Biotek Ventilator Tester (Bio-Tek Instr., Vermont, USA) or body plethysmograph (SensorMedics System, Anaheim, USA) were correlated with data from the spirometry module. Data were analyzed according to a statistical regression model resulting in a best-fit equation based on density, voltage, and volume measurements. Results. As expected, the D-lite (a modified Pitot tube) showed density-dependent behaviour. Regression equations and percentage deviation of estimated versus measured values were calculated. Conclusion. Measurements with the D-lite using low-density gases are satisfactorily contained in best-fit equations with a standard deviation of less than 5% during all ventilatory modes and mixtures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...