Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 32 (1960), S. 1704-1706 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1989), S. 180-185 
    ISSN: 1432-0789
    Keywords: Extractability ratios ; Microbial biomass ; N immobilization-remineralization ; Priming effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A Pakistani soil (Hafizabad silt loam) was incubated at 30°C with varying levels of 15N-labelled ammonium sulphate and glucose (C/N ratio of 30 at each addition rate) in order to generate different insitu levels of 15N-labelled microbial biomass. At a stage when all of the applied 15N was in organic forms, as biomass and products, the soil samples were analysed for biomass N by the chloroform (CHCl3) fumigation-extraction method, which involves exposure of the soil to CHCl3 vapour for 24 h followed by extraction with 500 mM K2SO4. A correction is made for inorganic and organic N in 500 mM K2SO4 extracts of the unfumigated soil. Results obtained using this approach were compared with the amounts of immobilized 15N extracted by 500 mM K2SO4 containing different amounts of CHCl3. The extraction time varied from 0.5 to 4 h. The amount of N extracted ranged from 27 to 270 μg g−1, the minimum occurring at the lowest (67 μg g−1) and the maximum at the highest (333 μg g−1) N-addition rate. Extractability of biomass 15N ranged from 25% at the lowest N-addition rate to 65%a for the highest rate and increased consistently with an increase in the amount of 15N and glucose added. The amounts of both soil N and immobilized 15N extracted with 500 mM K2SO4 containing CHCl3 increased with an increase in extraction time and in concentration of CHCl3. The chloroform fumigation-extraction method gives low estimates for biomass N because some of the organic N in K2SO4 extracts of unfumigated soil is derived from biomass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 54-60 
    ISSN: 1432-0789
    Keywords: Biomass N ; Humus fractions ; Hydrolyzable N ; Legume N ; Mineralizable N ; N-mineralization ; 15N-labelled material
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 −)-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 145-150 
    ISSN: 1432-0789
    Keywords: Nitrogen-15 ; Ammonia fixation ; Organic matter-fixed NH3 ; Clay-fixed NH inf4 sup+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The application of liquid anhydrous NH3 to soil leads to chemical fixation of NH3 by organic matter and of NH inf4 sup+ by clay minerals. A laboratory study was conducted to ascertain the biological transformations of newly fixed liquid anhydrous 15NH3 in a Drummer silty clay loam by incubation of the 15N-labelled soil with glucose for 0, 7, 30, and 90 days and by sequential extraction of organic-matter-fixed 15NH3 with 0.15 M Na4P2O7, 0.15 M KOH, 0.1 M NaOH, and acidified dimethyl sulfoxide. About 16% of the 15NH3 injected was fixed, of which 52% was accounted for by clay fixation. The various humic fractions (fulvic acid, humic acid, and humin) were obtained, and the distribution patterns of the fixed 15NH3-N in these fractions were compared. The potential availability of the fixed 15NH3-N was also estimated. The percentage of the 15NH3 recovered as organic-matter-fixed 15NH3 decreased as the length of incubation increased (to 28% after 90 days); the decrease was attributed in part to an increase in the amount recovered as clay-fixed NH inf4 sup+ (from 52 to 64%). Changes in the distribution of the organic-matter-fixed 15NH3-N in the humic fractions included: (1) an increase in the relative amount of the fixed 15NH3 as humic acid in both the Na4P2O7 and KOH extracts, (2) an increase in the percentage of organic-matter-fixed 15NH3-N in the fulvic acid fractions as high-molecular-weight components (determined by dialysis) or as generic fulvic acid (determined by sorption-desorption from XAD-8 resin), and (3) an increase in the percentage of the organic-matter-fixed 15NH3 as humin. The potential availability of the organic-matter-fixed 15NH3-N decreased as the length of the incubation increased, from 22 to 4% over the 90-day incubation period, and was correlated significantly (0.05 level) with Na4P2O7-extractable N. These results suggest that organic-matter-fixed liquid anhydrous NH3 is initially more labile than the native soil N but becomes less labile with time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1988), S. 32-38 
    ISSN: 1432-0789
    Keywords: Hydrolysable N ; Mineralizable N ; N2-fixation ; Priming effect ; Plant available N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Non-symbiotic N2 fixation was studied under laboratory conditions in two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) incubated in a 15N-enriched atmosphere. N2 fixation was greatest with the Drummer soil (18–122 μg g−1 soil, depending upon the soil treatment) and lowest with the Khurrarianwala soil (4–81 μg g−1 soil). Fixation was increased by the addition of glucose, a close correlation being observed between the amount of glucose added and the amount of N2 fixed in the three soils (r = 0.96). Efficiency of N2 fixation varied with soil type and treatment and was greatest in the presence of added inorganic P. Application of Mo apparently had a negative effect on the amount and efficiency of N2 fixation in all the soils. The percentage of non-symbiotically fixed 15N in potentially mineralizable form (NH 4 + -N released in soil after a 15-day incubation period under anaerobic conditions) was low (2%–18%, depending upon the soil treatment), although most of the fixed N (up to 90%) was recovered as forms hydrolysable with 6N HCl. Recovery in hydrolysable forms was much greater for the fixed N than for the native soil N, indicating that the former was more available for uptake by plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 199 (1963), S. 97-98 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The gases were prepared for analysis by reacting a 50- to 200-mg sample of the substance in question with nitrous acid in a Van Slyke manometric apparatus, using a technique similar to that utilized for the determination of amino nitrogen by the nitrous acid method1. The procedure was similar to ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 183 (1959), S. 1414-1415 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The difficulty involved in the determination of native fixed ammonium in soil is that of finding a method that will secure quantitative release of fixed ammonium from clay minerals without causing decomposition of nitrogenous soil organic matter to ammonium. In the work reported here, the value of ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 201 (1964), S. 107-107 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We have now established the identity of the unknown gas. A preliminary investigation showed that the gas contained carbon; for example, carbon dioxide was liberated by oxidation with permanganate, and carbon monoxide was produced by thermal decomposition. The evidence indicated that the gas was ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 46 (1995), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: A discrete-site/electrostatic model of ion binding by humic substances has been applied to proton-and copper-binding data for a soil humic acid. The proton data cover the pH range 3–9 and the ionic strength range 0.001 m-0.1 m, while those for copper refer to the pH range 4–5, ionic strengths between 0.005 m and 0.1 m, and p[Cu] values between 3 and 8. The model is able to explain the major observed trends, including the dependence of proton and copper binding on ionic strength and the binding of copper as a function of pH. However, the calculated ionic strength dependence of copper binding is slightly less than that observed. In addition, the model has been used to predict ratios of protons released to copper bound under different conditions, on the basis of the separately estimated parameters for proton and copper binding. The model correctly predicts the ratios to be between 1 and 2, and to decrease with increasing bound copper and with pH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 42 (1995), S. 1-11 
    ISSN: 1573-0867
    Keywords: nitrogen ; 15N humic substances ; acid hydrolysis ; analytical pyrolysis ; NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Most of the N in surface soils occurs in organic forms. The organic N in soil plays a key role in plant nutrition and soil fertility through its effects on microbial activity and nutrient availability. Typically, about one-third of the fertilizer N applied to temperate-zone soils is immobilized and retained in organic forms at the end of the growing season. A significant portion of this newly immobilized N is no more available to microorganisms and plants than the native humus N. Stabilization processes, probably involving polymerization of amino compounds and polyphenols, result in incorporation of N into humic substances with a concurrent reduction in N availability. This paper presents an account of the forms and nature of organic N in soil, emphasizing possible formation pathways, chemical characterization of humic substances through conventional and solid-state techniques, and the fate and composition of newly immobilized N in soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...