Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0843
    Keywords: Key words Flavopiridol ; L86-8275 ; NSC 649890 HPLC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Purpose: Flavopiridol is a flavone which inhibits several cyclin-dependent kinases, and exhibits potent growth-inhibitory activity against a number of human tumor cell lines both in vitro, and when grown as xenografts in mice. It is currently being evaluated in a phase I clinical trial at the National Cancer Institute. The objective of this project was to develop and validate an analytical method for the assay of flavopiridol in human plasma, with sufficient sensitivity to permit the plasma pharmacokinetics of flavopiridol to be studied during clinical trials. Methods: Flavopiridol was isolated from human plasma samples by extraction with t-butylmethyl ether following alkalinization with borate buffer (pH 8.0). The extract was evaporated, the residue was dissolved in mobile phase, and analyzed by reversed-phase high-pressure liquid chromatography. Chromatography was accomplished with a polymer-based C18 column eluted with a mobile phase consisting of methanol-phosphate buffer, pH 11.0 (53:47 v/v). Electrochemical detection (ECD) was employed. Results: Flavopiridol was recovered from human plasma with an efficiency of 85–87%. Calibration curves were linear over the concentration range 10–500 nM (4.4–219 ng/ml). Plasma standard concentrations were measured with an accuracy and precision ranging from 3.2% to 10%. Regression analysis of flavopiridol concentrations of 15 clinical trial plasma samples ranging in concentration from approximately 50 to 4000 μM quantitated by both ECD and mass spectrometry showed close agreement. The equation of the regression line was y = 1.02x + 8 with a correlation coefficient of 0.969. Continuous infusion of flavopiridol in four patients for 72 h at a rate of 50 mg/m2 per day, resulted in mean steady-state plasma concentrations of from 200 to 300 nM. Levels declined in a biexponential manner following termination of the infusion, falling to approximately 10 nM after 48 h. Conclusions: An analytical method for the assay of flavopiridol in human plasma was developed with sensitivity to at least 10 nM. The assay is accurate, precise and specific, and is suitable for determination of plasma flavopiridol concentrations for pharmacokinetic studies during clinical trials.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: F344 rats ; B6C3F1 mice ; Toxicology ; 1,2-dibromo-3-chloropropane ; 1,2-dibromoethane ; Respiratory tract ; Nasal epithelium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Seventy F344 rats and 144 B6C3F1 mice were subdivided into seven groups. Three groups were each exposed via inhalation to 1, 5, or 25 ppm of 1,2-dibromo-3-chloropropane (DBCP) for 6 h per day, 5 days per week for 13 weeks. Three additional groups were each similarly exposed to 3, 15, or 75 ppm of 1,2-Dibromoethane (EDB). The remaining group was exposed to room air under the same conditions. At 13 weeks, rats and mice showed severe necrosis and atrophy of the olfactory epithelium in the nasal cavity after inhalation of 5 or 25 ppm DBCP and 75 ppm EDB. Lower concentrations induced squamous cell metaplasia, hyperplasia and cytomegaly of the epithelium of the respiratory nasal turbinals. Squamous metaplasia, hyperplasia and cytomegaly of the epithelium was also seen in larynx, trachea, bronchi and bronchioles. Other compound related toxic lesions in rats were seen in the liver, kidney and testes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1335
    Keywords: Key words Brain tumor ; Glioma ; Preclinical evaluation ; Human tumor xenograft ; Ellipticinium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Some ellipticine derivative salts, including 9-chloro-2-methylellipticinium (CME), have been found to have a marked selectivity against all eight brain tumor cell lines of the U.S. National Cancer Institute's disease-oriented in vitro screen. We initiated in vivo antitumor studies to explore the feasibility for further development of this class of compounds. We found that CME was extremely toxic to nude mice when given i.p. at a dose of 25 mg/kg for 3 consecutive days. Animals treated by this route experienced an increase in hepatic transaminases and histopathological changes in the liver, compatible with mitochondrial damage. In contrast, when the portal circulation was bypassed and the same dose of CME was given i.v., animals tolerated daily bolus injections for 5 consecutive days. This 5-day i.v. bolus schedule had consistent antitumor activity, with 28.1% growth delay on s.c. implanted human U251 gliomas. When the potentially high peaks of CME in the portal circulation were avoided by using a 3-day continuous infusion with osmotic minipumps implanted i.p. to release 3.4 mg kg−1 h−1 or 6.6 mg kg−1 h−1 CME, there were only modest increases in liver enzymes and leukopenia, but no meaningful antitumor activity was observed. In contrast, continuous infusion in the s.c. space was well tolerated and was accompanied by a demonstrable growth delay in s.c. U251 human gliomas of 37.8%. When CME was used in conjunction with carmustine, etoposide or cisplatin, no synergistic activities were observed, but additive effects were demonstrated. Our pharmacokinetic and disposition studies with CME argue against the notion that large and invasive tumors in the brain lack blood-brain barrier features. When CME was used in animals bearing orthotopically implanted U251 gliomas in the brain of nude mice, the survival of the treated animals was not better than vehicle controls, and the addition of CME to carmustine therapy did not improve the survival of those animals treated with carmustine alone. We conclude that, in spite of its marked cytotoxicity in vitro on a variety of human brain tumor cell lines, including U251 glioma cells, CME has a modest antitumor effect on extracranially implanted U251 glioma tumors, and no beneficial effect in animals bearing the same U251 tumor in the brain, owing to a poor penetration into the brain parenchyma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...