Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 10 (1988), S. 71-79 
    ISSN: 1434-6079
    Keywords: 64.60
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A theory is developed which describes the optical properties of fractal clusters (i.e. of aggregates of non-trivial Hausdorff dimension consisting of interacting monomer particles). It is shown that with respect to these properties fractal clusters differ significantly from both gases and condensed media. The interaction between the monomers is assumed to be dipole-dipole. The theory is based on the self-consistent field equations; it takes into account the fluctuation nature of the fractal cluster (considerable probability for approach of monomers to each other despite an asymptotically zero integral density). An expression is obtained for the linear susceptibility. Combination of the monomers with the formation of a cluster entails the splitting, shift and broadening of the monomer spectra. These changes depend strongly on the fractal (Hausdorff) dimension of the cluster but do not depend on the number of monomers in it (for a cluster of non-trivial dimension). On the other hand, the monomers partially retain their individuality and the susceptibility — its quasi-resonance nature. Broadening, like the imaginary part of the susceptibility, does not depend on dissipation in an individual monomer. It is predicted that giant Raman scattering may occur at an impurity particle fixed near one of the cluster monomers when excitation takes place in the absorption band of the cluster. The enhancement factor for the scattering is also determined by the fractal dimension.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-6079
    Keywords: 68.35.Bs ; 64.60
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Linear and nonlinear optical properties of metal fractal clusters are studied. Experimental evidence is presented proving that clusters possess unique optical nonlinearities, characterized by rapid response, broadbandness and enormously high values of nonlinear susceptibility. A 106 times enhancement of the DFWM signal has been observed experimentally in silver particles aggregated into clusters. For the first time frequency-and polarization-selective photomodification of fractal silver clusters has been realized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 10 (1988), S. 81-92 
    ISSN: 1434-6079
    Keywords: 68.35.Bs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to theQ-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes “substraction” of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are “accumulated”) is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Sequence-specific photomodification of oligodeoxynucleotide pAGAGTATTGACTTA (“a target”) has been carried out with the aid of complementary fluorescent probes. Such a probe consisted of oligodeoxynucleotide pAATACTCT and a chromophore group attached to its 5′ end. Three different derivatives of ethidium bromide were used as a chromophore. The photomodification was induced by nitrogen laser radiation (337 nm, 15 MW /cm2). The irradiation induces the following photodamages: target cleavage at the specific binding site with a cutting off of the 8-mer from its 5′ end (yield up to 12%), formation of specific covalent adduct target-probe with a yield of 20-70%, and piperidine-sensitive target modifications with a 7-27% yield (for different chromophores). The total yield of specific photodamages of all kinds is 50-80%. The target cleavage and generation of piperidine-sensitive modifications are optically nonlinear processes. Piperidine treatment of the irradiated samples led to specific cleavage of the target with the yield up to 40%. All kinds of observed modifications are not influenced by high concentrations of free radical scavengers: 1.3M tBuOH and 10 mM cystamine. The pattern of cleavage indicates that the most probable position of the chromophore is between T8 and G9 of the target, i.e., the chromophore stacks on top of the last A · T base pair of the duplex. The aggregate of evidence is in agreement with the mechanism of nonlinear photomodification (the cleavage and generation of piperidine-sensitive modifications) based on the transfer of two-photon excitation energy from the chromophore to the target.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...