Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 498 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 16 (1984), S. 209-221 
    ISSN: 1573-6881
    Keywords: Plasma membrane ; NADH dehydrogenase ; antitumor drugs ; adriamycin ; anthracycline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Doxorubicin (adriamycin) is cytotoxic to cells, but the biochemical basis for this effect is unknown, although intercalation with DNA has been proposed. This study suggests that the cytotoxicity of this drug may be due to inhibition of the plasma membrane redox system, which is involved in the control of cellular growth. Concentrations between 10−6–10−7 M adriamycin inhibit plasma membrane redox reactions 〉50%. AD32, a form of adriamycin which does not intercalate with DNA, but is cytotoxic, also inhibits the plasma membrane redox system. Thus, the cytotoxic effects of adriamycin, which limit its use as a drug, may be based on the inhibition of a transplasma membrane dehydrogenase involved in a plasma membrane redox system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 23 (1991), S. 773-803 
    ISSN: 1573-6881
    Keywords: Plasma membrane ; NADH oxidase ; transplasma membrane electron transport ; proton release ; Na+/H+ antiport ; H+ ATPase ; transferrin ; transferrinstimulated oxidase ; adriamycin ; cis-platin, iron transport ; blue light effects ; auxin ; coenzyme Q ; turbo reductase ; vitamin K ; protein kinase ; cell growth control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Transplasma membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes containb cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6881
    Keywords: Transferrin receptor ; diferric transferrin ; 3T3 cells ; transformation ; iron reduction ; plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Transformation of 3T3 cells by SV40 virus changes the properties of the transplasma membrane electron transport activity which can be assayed by reduction of external ferric salts. After 42 h of culture and before the growth rate is maximum, the transformed cells have a much slower rate of ferric reduction. The change in activity is expressed both by change inK m andV max for ferricyanide reduction. The change in activity is not based on surface charge effect or on tight coupling to proton release or on intracellular NADH concentration. With transformation by SV40 virus infection the expression of transferrin receptors increases, which correlates with greater diferric transferrin stimulation of the rate of ferric ammonium citrate reduction in transformed SV40-3T3 cells than in 3T3 cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 16 (1984), S. 583-595 
    ISSN: 1573-6881
    Keywords: Plasma membrane ; electron transport ; proton excretion ; growth factors ; ferricyanide reduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract A transmembrane electron transport system has been studied in HeLa cells using an external impermeable oxidant, ferricyanide. Reduction of ferricyanide by HeLa cells shows biphasic kinetics with a rate up to 500 nmoles/min/g w.w. (wet weight) for the fast phase and half of this rate for the slow phase. The apparentK m is 0.125 mM for the fast rate and 0.24 mM for the slow rate. The rate of reduction is proportional to cell concentration. Inhibition of the rate by glycolysis inhibitors indicates the reduction is dependent on glycolysis, which contributes the cytoplasmic electron donor NADH. Ferricyanide reduction is shown to take place on the outside of cells for it is affected by external pH and agents which react with the external surface. Ferricyanide reduction is accompanied by proton release from the cells. For each mole of ferricyanide reduced, 2.3 moles of protons are released. It is, therefore, concluded that a transmembrane redox system in HeLa cells is coupled to proton gradient generation across the membrane. We propose that this redox system may be an energy source for control of membrane function in HeLa cells. The promotion of cell growth by ferricyanide (0.33–0.1 mM), which can partially replace serum as a growth factor, strongly supports this hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6881
    Keywords: Plasma membrane oxidoreductase ; transferrin ; transferrin receptor ; iron transport ; cell growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Nonpermeable electron acceptors can be reduced by a transplasma membrane electron transport system in suspensions of intact cells. Here we report that diferric transferrin is reduced by HeLa S3 cells. The reduction is recorded spectrophotometrically as the formation of the ferrous complex of bathophenanthroline disulfonate. Ferric ammonium citrate can also be used as an electron acceptor, and the presence of low concentrations of diferric transferrin greatly stimulates the reduction of trivalent iron under these conditions. Likewise very low concentrations of ferricyanide, which does not give rise to a ferrous bathophenanthroline disulfonate complex formation, have a strong stimulatory effect on the complex formation when ferric ammonium citrate is the source of ferric iron. Apotransferrin is a potent inhibitor of the reaction. The inhibition occurs at the concentration necessary for complete occupancy of the transferrin receptors. The inhibition can be demonstrated also when high concentrations of ferricyanide are used as electron acceptor. The possible mechanism behind the reported phenomena is discussed, and it is concluded that the transplasma membrane electron transport system can be involved in the process of cellular iron uptake.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...