Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 8585-8597 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 10662-10676 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 963-980 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Principal component analysis applied to a set of dipeptides illustrates how changes in families of parameters act in concert to produce overall molecular structural changes. Principal component analysis is an eigenvalue-eigenvector analysis whereby the parametric sensitivity coefficient matrix is manipulated to produce weighted principal components, which reveal the variant and invariant directions in the parameter space. This analysis summarizes the sensitivity results by revealing interdependence among the parameter values with regard to their role in controlling the molecular structure. An analysis of the principal components reveals hidden relationships among the parameters. Thus, those parameters, which were thought to be of controlling significance with respect to the molecular structure, may, in fact, not be (or vice versa) due to cooperative parametric interactions; as a result, the parameters of significance in a sequence of dipeptides are identified. In general, for the dipeptides studied, there is mutual exclusion of dominant parameters between the sets of invariant and variant eigenvectors. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 947-962 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article studies the backbone influence on the side chains of N-methyl N′-acetyl amides (dipeptides) of alanine, valine, phenylalanine, leucine, isoleucine, glutamine, and lysine. Several local minima corresponding to protein φ, ψ, and χ values for each dipeptide are determined through optimization in the MM2 force field. These local minima are located in various regions on the Ramachandran map related to particular protein secondary structures. The dipeptide backbone influence on the side chain is explored via the sensitivity of the side chain torsion angles χ with respect to the backbone φ and ψ angles. Sensitivity coefficients are calculated, describing the χ response to an externally imposed change in φ or ψ. The χ response, which depends on the backbone conformation in a particular region, is induced primarily by the van der Waals and dipole interactions between the backbone and the side chain, which change with a deviation in φ or ψ. Various sensitivity trends are observed in the particular Ramachandran regions, revealing the subtle relationships between the dipeptide backbone and the side chain. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 130-130 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 1074-1090 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Sensitivity analysis techniques are applied to the FKBP-FK506 and FKBP-rapamycin complexes to quantify the conformational relationships between FKBP and its ligands. Crystal structures of the two FKBP complexes are energy minimized in the Amber force field using a continuum solvent model, and derived Green's function sensitivity coefficients are developed to describe the relationship between the φ, ψ, and χ1 torsional angles of the FKBP residues and the bound ligand macrocycle torsional angles. Sensitivity analysis is applied to the entire FKBP structure and reveals that the local conformation of the residues of the 80s and 50s loops and of the active site are sensitive to the ligand conformation. The analysis also reveals that the torsional angles controlling the orientation of the amide and keto carbonyls of FK506 are sensitive to the aromatic side chains in the FKBP carbonyl binding pocket. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...