Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract. A temperate grassland model has been used to simulate carbon sequestration under various environmental conditions. The results suggest that the CO2 and nitrogen fertilization that has occurred may contribute appreciably to the so-called missing carbon sink, which it has been suggested must exist to balance the global carbon budget.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 12 (1989), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract. The model comprises three submodels, which together give an integrated picture of nitrogen pools and fluxes in grassland under grazing or cutting. The first submodel represents the interaction of the grazing animal with the sward through intake and the production of excreta: the second is concerned with the growth of the vegetative grass crop and its response to light, temperature and nitrogen; these two submodels are interfaced with a submodel of soil carbon and nitrogen pools and processes, including dead shoot and root material, dead and live soil organic matter, and three pools representing mineral nitrogen. No account is taken of water, which is assumed to be non-limiting, or the possible effects of soil pH and soil aeration. The model is used to simulate a range of management strategies as applied to stocking density and fertilizer application, examining both steady-state and non-steady-state conditions. The model highlights the long time scales associated with grassland systems, the role of the grazing animal in modifying carbon and nitrogen flows, and the importance of soil conditions to grassland productivity and fertilizer response. The productivity of grazed swards may be greater or less than that of cut swards depending on stocking density and fertilizer application, although nitrogen recovery (as calculated here) is always lower in grazed swards. The model is able to stimulate mineralization and immobilization, and place these in the context of plant processes and the grazing animal.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract A previously described growth model of the vegetative grass crop is extended to include a simple representation of the root system, uptake of nitrogen from a soil nitrogen pool, and response to fertilizer application. The model simulates the processes of light interception, photosynthesis, partitioning of new growth, leaf area expansion, growth and maintenance respiration, ageing of plant tissues, senescence, recycling of substrates from senescing tissues, nitrogen uptake by the plant, leaching, mineralization, and fertilizer application. A principal component of the model, nitrogen uptake, is assumed to depend positively on plant carbon substrate concentration and soil nitrogen concentration, and to be inhibited by plant nitrogen substrate concentration. The dynamic responses to different levels of soil nitrogen, of shoot and root growth, nitrogen uptake and root activity, carbon and nitrogen plant substrate concentrations, and the fraction of substrate carbon used by the shoots, are examined; realistic behaviour is observed. The model predicts nitrogen fertilizer responses of yield and plant nitrogen content, which are compared directly with experimental data; good agreement is obtained.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 6 (1983), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract. A crop growth model incorporating leaf area expansion and senescence is constructed. Leaf area is treated as an independent state variable with the incremental specific leaf area a function of the storage/structure ratio. The vegetative grass crop, which usually has three green leaves per tiller, is particularly considered; the above-ground dry matter is assumed to occupy four compartments: growing leaves, first fully expanded leaves, second fully expanded leaves, and senescing leaves. Each compartment is described by two state variables—structural weight and leaf area index. Newly synthesized structural material comprises leaf, sheath and stem in fixed proportions, although defoliation can alter these proportions in the standing crop. Photosynthesis and respiration are calculated in the usual way. Root growth, root: shoot partitioning, soil water and nutrients are assumed to be relatively unimportant for an established vegetative grass crop grown under favourable conditions. The model is used to simulate the time course of dry matter and leaf area development for crops that are exposed to a constant environment, a seasonally varying environment, and are defoliated.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 3 (1980), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract The nature of science and of scientific progress is discussed, with special reference to the role of mathematics, and the existence in biology of hierarchical organization and levels of description. A distinction is made between a description of a phenomenon, and an understanding of that phenomenon; if mathematics is applicable, this is reflected in the use of an empirical or a mechanistic model. Reductionism is considered in relation to alternative viewpoints, and some examples from cell biology and plant physiology of problems where reductionism alone may be leading to difficulties, are discussed. A possibly more effective research strategy is suggested.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract. A model of water flow from the soil into the plant, and from the plant to the atmosphere is described. There are three state variables in the model: the soil, root and shoot water contents. The flow rate of water from the soil to the root is calculated by dividing the gradient in water potential by a resistance, comprising the resistance from the bulk soil to the root surface, and that from the root surface to the root interior. The resistance in the soil depends on the soil hydraulic conductivity, which in turn depends on the soil water potential. The flow rate from the root to the shoot is given by the gradient in water potential divided by a resistance, which depends on the structural dry mass of the plant. Transpiration is described by the Penman-Monteith equation. The plant water characteristics can be modified to take account of osmotic and cell wall rigidity parameters. The model incorporates the concept of shoot/root ‘messages’ of water stress, which influence stomatal conductance. The message works through the generation of a hormone as the pressure potential in the shoot (mesophyll) or root falls. This hormone induces a shift of osmoticum from the guard cells to the surrounding mesophyll cells, which causes an increase (i.e. closer to zero) in the osmotic potential in these cells. This, in turn, causes a decrease in their pressure potential, and so reduces stomatal conductance. The model is used as a framework to address some of the issues that have recently been raised concerning the role of water potential in describing water flow through plants. We conclude that, with the hormone present, there is unlikely to be a unique relationship between stomatal conductance and shoot total water potential, since stomatal conductance depends on the pressure potential in the guard cells, which may differ from that in other cells. Nevertheless, this does not imply that water potential is not an important, and indeed fundamental, component for describing water flow through plants. Other aspects of water flow through plants are also considered, such as diurnal patterns of shoot, root and soil water potential components. It is seen that these may differ from the commonly held view that, as the soil dries down, they all attain the same values during the dark period, and which, as we show, is largely unsubstantiated either theoretically or experimentally.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 10 (1987), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract The contribution from temperature gradients within a plant to convective transport is calculated. Its magnitude depends primarily on the temperature differences in the plant and the radius of the conducting elements; the other quantities affecting it are well-established physical constants. Assuming a temperature difference in the plant of 1 K and a conductive element radius of 10−4 m, the speed of convective flow is 0.5 cm h−1 and this is independent of distance.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The ITE Edinburgh Forest Model, which describes diurnal and seasonal changes in the pools and fluxes of C, N and water in a fully coupled forest–soil system, was parametrized to simulate a managed conifer plantation in upland Britain. The model was used to examine (i) the transient effects on forest growth of an IS92a scenario of increasing [CO2] and temperature over two future rotations, and (ii) the equilibrium (sustainable) effects of all combinations of increases in [CO2] from 350 to 550 and 750 μmol mol−1, mean annual temperature from 7.5 to 8.5 and 9.5°C and annual inputs of 20 or 40 kg N ha−1. Changes in underlying processes represented in the model were then used to explain the responses. Eight conclusions were supported by the model for this forest type and climate.〈list xml:id="l1" style="custom"〉1Increasing temperatures above 3°C alone may cause forest decline owing to water stress.2Elevated [CO2] can protect trees from water stress that they may otherwise suffer in response to increased temperature.3In N-limiting conditions, elevated [CO2] can increase allocation to roots with little increase in leaf area, whereas in N-rich conditions elevated [CO2] may not increase allocation to roots and generally increases leaf area.4Elevated [CO2] can decrease water use by forests in N-limited conditions and increase water use in N-rich conditions.5Elevated [CO2] can increase forest productivity even in N-limiting conditions owing to increased N acquisition and use efficiency.6Rising temperatures (along with rising [CO2]) may increase or decrease forest productivity depending on the supply of N and changes in water stress.7Gaseous losses of N from the soil can increase or decrease in response to elevated [CO2] and temperature.8Projected increases in [CO2] and temperature (IS92a) are likely to increase net ecosystem productivity and hence C sequestration in temperate forests.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: The Hurley Pasture Model was used to examine the short and long-term responses of grazed grasslands in the British uplands to a step increase from 350 to 700 μmol mol–1 CO2 concentration ([CO2]) with inputs of 5 or 100 kg N ha–1 y–1. In N-rich grassland, [CO2] doubling quickly increased net primary productivity (NPP), total carbon (Csys) and plant biomass by about 30%. By contrast, the N-poor grassland underwent a prolonged ‘transient’, when there was little response, but eventually NPP, Csys and plant biomass more than doubled. The ‘transient’ was due to N immobilization and severe depletion of the soil mineral N pool. The large long-term response was due to slow N accumulation, as a result of decreased leaching, decreased gaseous N losses and increased N2-fixation, which amplified the CO2 response much more in the N-poor than in the N-rich grassland. It was concluded that (i) ecosystems use extra carbon fixed at high [CO2] to acquire and retain nutrients, supporting the contention of Gifford et al. (1996), (ii) in the long term, and perhaps on the real timescale of increasing [CO2], the response (in NPP, Csys and plant biomass) of nutrient-poor ecosystems may be proportionately greater than that of nutrient-rich ones, (iii) short-term experiments on nutrient-poor ecosystems may observe only the transient responses, (iv) the speed of ecosystem responses may be limited by the rate of nutrient accumulation rather than by internal rate constants, and (v) ecosystem models must represent processes affecting nutrient acquisition and retention to be able to simulate likely real-world CO2 responses.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...