Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2020-11-26
    Description: The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems effi- ciently. As one of the strategies to enhance the computation efficiency furthermore, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. In applying the model reduc- tion, the methods of clustering periods by the order of time series, based on an operational strategy, and by the k-medoids method are applied. As a case study, the multiobjective optimal design of a gas turbine cogeneration system with a practical configuration is investigated by adopting the annual total cost and pri- mary energy consumption as the objective functions to be minimized simultaneously, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function. It also turns out that the model reduction only by the k- medoids method is effective very limitedly when importance is given to minimizing the second objective function.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-29
    Description: Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, a method of clustering periods has been proposed based on the optimal operational strategies of the systems to avoid a large decrease in the lower bound for the optimal value of the objective function by model reduction. This method has been realized only by solving the relaxed optimal design problem at the upper level in advance. The method can decrease the number of operation variables and constraints at the upper level, and thus can decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the proposed clustering method is effective to enhance the computation efficiency in comparison with the conventional one which clusters periods regularly in time series.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-17
    Description: To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such multi-period optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods has also been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, by utilizing features of the hierarchical MILP method, a method of clustering periods is proposed based on the optimal operational strategies of energy supply systems obtained by solving the relaxed optimal design problem. As a case study, the method is applied to the optimal design of a gas turbine cogeneration system, and it is clarified that the method is effective to enhance the computation efficiency in comparison with a conventional method of clustering periods regularly.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-17
    Description: Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, three clustering methods are applied to time aggregation and compared with one another in terms of the computation efficiency. Especially, the k-medoids method is applied newly in addition to the time-series and operation-based methods applied previously. A case study is conducted on the optimal design of a gas turbine cogeneration system for district energy supply. Through the study, it turns out the k-medoids method is effective to shorten the computation time as compared with the time-series method, although it is necessary to set the number of clusters artifically in both the methods. It also turns out that the operation-based method is more effective than the k-medoids method in terms of the computation efficiency even with the number of clusters set automatically.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-26
    Description: The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. The methods of clustering periods by the order of time series, by the k-medoids method, and based on an operational strategy are applied for the model reduction. As a case study, the multiobjective optimal design of a gas turbine cogeneration system is investigated by adopting the annual total cost and primary energy consumption as the objective functions, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function, but that the model reduction only by the k-medoids method is effective very limitedly when importance is given to minimizing the second objective function.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-26
    Description: To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. A hierarchical mixed-integer linear programming method has been proposed to solve such an optimal design problem efficiently. In this paper, a method of reducing model by clustering periods with the k-medoids method is applied to the relaxed optimal design problem at the upper level. Through a case study, it is clarified how the proposed method is effective to enhance the computation efficiency in a large scale optimal design problem.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-26
    Description: To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods based on the optimal operational strategies of equipment has been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, these methods are applied to the multiobjective optimal design of a cogeneration system by considering the annual total cost and primary energy consumption as the objective functions to be minimized. Through a case study, it turns out that the model reduction by the operation-based time-period clustering is effective in terms of the computation efficiency when importance is given to the first objective function, while it is not when importance is given to the second objective function.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...