Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 112 (1977), S. 1-8 
    ISSN: 1432-072X
    Keywords: Candida tropicalis ; Utilization of n-alkane ; Isolation of microbody ; Catalase ; Glyoxylate cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Microbodies appearing abundantly in n-alkane-grown cells of Candida tropicalis pK 233 were isolated by means of sucrose density gradient centrifugation. Electron microscopical observation showed that the microbodies isolated were intact. Localization of catalase and d-amino acid oxidase in the isolated microbodies was confirmed. Isocitrate lyase, malate synthase and NADP-linked isocitrate dehydrogenase were also located in the microbody, but malate dehydrogenase, citrate synthase, aconitase and NAD-linked isocitrate dehydrogenase were not. Neither cytochrome P-450 nor NADPH-cytochrome c reductase, the components involved in the n-alkane hydroxylation system of the yeast, were detected in the microbody fraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Candida tropicalis ; n-Alkanes ; Propionate ; Carnitine acethyltransferase ; Peroxisomes ; Enzyme induction ; Immunochemical studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The level of carnitine acetyltransferase was markedly increased in harmony with appearance of peroxisomes in alkane-grown cells and propionate-grown cells of Candida tropicalis. From immunochemical studies with antibodies against peroxisomal and mitochondrial carnitine acetyltransferases, it was confirmed that no other type of the enzyme than the peroxisomal and mitochondrial ones was present in alkane-, propionate- and glucose-grown cells of the yeast. The increase in the enzyme level in alkane- and propionate-grown cells was immunochemically proved to result from the increase in the amount of the enzyme protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 99 (1974), S. 181-201 
    ISSN: 1432-072X
    Keywords: Yeast ; Electronmicroscopy ; Microbody ; Peroxisome ; Catalase ; n-Alkane ; Utilizing Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Catalase activities of the cells growing onn-alkanes of various strains ofCandida yeasts wer markedly higher than those of the cells growing on glucose, ethanol or acetate. In connection with this, electron-microscopical studies revealed abundant appearance of specific microbodies having homogeneous matrix surrounded by single unit membrane in the hydrocarbon-growing cells. Localization of catalase activity in the microbodies, in addition to the mitochondria, was confirmed by cytochemical treatment of the cells with 3,3′-diaminobenzidine reagent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Candida tropicalis ; alkane utilization ; Yeast peroxisomes ; Long-chain alcohol dehydrogenase ; Long-chain aldehyde dehydrogenase ; Acyl-CoA synthetase ; Glycerol-3-phosphate acyltransferase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Long-chain alcohol dehydrogenase and longchain aldehyde dehydrogenase were induced in the cells of Candida tropicalis grown on n-alkanes. Subcellular localization of these dehydrogenases, together with that of acyl-CoA synthetase and glycerol-3-phosphate acyltransferase, was studied in terms of the metabolism of fatty acids derived from n-alkane substrates. Both longchain alcohol and aldehyde dehydrogenases distributed in the fractions of microsomes, mitochondria and peroxisomes obtained from the alkane-grown cells of C. tropicalis. Acyl-CoA synthetase was also located in these three fractions. Glycerol-3-phosphate acyltransferase was found in microsomes and mitochondria, in contrast to fatty acid β-oxidation system localized exclusively in peroxisomes. Similar results of the enzyme localization were also obtained with C. lipolytica grown on n-alkanes. These results suggest strongly that microsomal and mitochondrial dehydrogenases provide long-chain fatty acids to be utilized for lipid synthesis, whereas those in peroxisomes supply fatty acids to be degraded via β-oxidation to yield energy and cell constituents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Candida tropicalis ; Propionate ; Alkanes ; Acetate ; Carnitine acetyltransferase ; Catalase ; Propionate-activating enzyme ; Peroxisomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Candida tropicalis, a representative alkane- and higher fatty acid-utilizing yeast, can grow on propionate used as sole carbon and energy source. Initial pH of the medium markedly affected the growth of the yeast on propionate. In propionate-grown cells, several enzymes associated with peroxisomes and/or participating in propionate metabolism were induced in connection with the appearance of the characteristic peroxisomes. Acetate-grown cells of this yeast had only few peroxisomes, while alkane-grown cells contained conspicuous numbers of the organelles. As compared with alkane-grown cells, some specific features were observed in peroxisomes and enzymes associated with the organelles of propionate-grown cells: The shape of peroxisomes was large but the number was small; unlike localization of catalase in peroxisomes of alkane-grown cells, the enzyme of propionate-grown cells was mainly localized in cytoplasm; as for carnitine acetyltransferase localized almost equally in peroxisomes and mitochondria in alkane-grown cells, propionate-grown cells contained mainly the mitochondrial type enzyme. A propionate-activating enzyme, which was different from acetyl-CoA synthetase, was also induced in cytoplasm of propionate-grown cells. The role of carnitine acetyltransferase and the propionate-activating enzyme in propionate metabolism is discussed in comparison with the role of carnitine acetyltransferase and acetyl-CoA synthetase in acetate metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Malate synthase ; Peroxisomes ; Alkane-grown yeast ; Candida tropicalis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Malate synthase, one of the key enzymes in the glyoxylate cycle, was purified from peroxisomes of alkane-grown yeast, Candida tropicalis. The enzyme was mainly localized in the matrix of peroxisomes, judging from subcellular fractionation followed by exposure of the organelles to hypotonic conditions. The molecular mass of this peroxisomal malate synthase was determined to be 250,000 daltons by gel filtration on a Sepharose 6B column as well as by ultracentrifugation. On sodium dodecylsulfate/polyacrylamide slab-gel electrophoresis, the molecular mass of the subunit of the enzyme was demonstrated to be 61,000 daltons. These results revealed that the native form of this enzyme was homo-tetrameric. Peroxisomal malate synthase showed the optimal activity pH at 8.0 and absolutely required Mg2+ for enzymatic activity. The K m values for Mg2+, acetyl-CoA and glyoxylate were 4.7 mM, 80 μM and 1.0 mM, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Peroxisomal NADP-linked isocitrate dehydrogenase ; NAD-linked isocitrate dehydrogenase ; Candida tropicalis ; Peroxisomes ; Mitochondria ; Cytosol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Peroxisomal NADP-linked isocitrate dehydrogenase (Ps-NADP-IDH) was purified for the first time from Candida tropicalis cells grown on n-alkane as a carbon source, which was effective in proliferation of peroxisomes. The properties of Ps-NADP-IDH were compared with those of mitochondrial NAD-linked isocitrate dehydrogenase (Mt-NAD-IDH) purified from the cells grown on acetate, in which peroxisomes did not proliferate. Ps-NADP-IDH was a homodimer of identical subunits (45 kDa), while Mt-NAD-IDH was suggested to be a heterooctamer composed of two types of subunits with different molecular masses (41 and 38 kDa). Kinetic studies revealed that Ps-NADP-IDH gave Michaelis-Menten saturation curves against isocitrate and NADP concentrations, whereas Mt-NAD-IDH was an allosteric enzyme regulated by ATP, AMP, and citrate. Inhibition by 2-oxoglutarate, a precursor of glutamate, was observed only for Ps-NADP-IDH. Both enzymes were inhibited by concomitant addition of oxalacetate and glyoxylate. The function of Ps-NADP-IDH seems to be completely discriminated from that of Mt-NAD-IDH as reflected by their distinct subcellular localizations. Furthermore, the properties of Ps-NADP-IDH were also compared with those of other mitochondrial and cytosolic IDHs from sources reported previously.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 97 (1974), S. 259-271 
    ISSN: 1432-072X
    Keywords: Corynebacterium simplex, Production of Co-Coproporphyrin, Utilization of Hydrocarbon ; Cobalt-Coproporphyrin III, Production by Corynebacterium simplex ; Utilization of Hydrocarbon by Corynebacterium simplex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A vitamin B12-producing and hydrocarbon-utilizing bacterium, Corynebacterium simplex, accumulated an appreciable amount of cobalt-porphyrin in cultural filtrates when grown on a n-hexadecane medium containing sufficient amounts of cobaltous sulfate and an appropriate detergent. When grown without the detergent, the cobalt-porphyrin was found only in the cells of the organism. In the latter case, the content of cobalt-porphyrin was comparable to that of vitamin B12 and 7 times lower than that of iron-porphyrin. Though the organism required cobaltous sulfate for optimal growth, the requirement could be efficiently replaced by the supplementation of cobalt-porphyrin and partly of vitamin B12. The porphyrin moieties of extra- and intracellular cobalt-porphyrin were identified as coproporphyrin III in both cases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Candida tropicalis ; Catalase Activity ; Development of Microbodies ; Electron Microscopy ; Utilization of n-Alkanes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Development of microbodies in Candida tropicalis pK 233 was studied mainly by electron microscopical observation. The yeast cells, precultured on malt extract, scarcely contained microbodies and showed very low catalase activity. When the precultured cells were transferred to a n-alkane medium and incubated with shaking, the number of microbodies increased and concomitantly the activity of catalase was enhanced. That is, both the area ratio of microbodies in the cell and the ratio of microbodies to cytoplasm in area increased significantly during the utilization of n-alkanes for 8 hrs. Localization of catalase in the microbodies was demonstrated cytochemically by use of 3,3′-diaminobenzidine, but other organella in the cell, except for vacuoles appearing in the early growth phase and mitochondria, were not stained with this reagent. Microbodies seemed to grow by division. Biogenesis of microbodies in the yeast cells is also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: Key wordsCandida tropicalis ; Citrate synthase ; Intron ; Mitochondria ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Citrate synthase, an essential enzyme of the tricarboxylic acid cycle in mitochondria, was purified from acetate-grown Candida tropicalis. Results from SDS-PAGE and gel filtration showed that this enzyme was a dimer composed of 45-kDa subunits. A citrate synthase cDNA fragment was amplified by the 5′-RACE method. Nucleotide sequence analysis of this cDNA fragment revealed that the deduced amino acid sequence contained an extended leader sequence which is suggested to be a mitochondrial targeting signal, as judged from helical wheel analysis. Using this cDNA probe, one genomic citrate synthase clone was isolated from a yeast λEMBL3 library. The nucleotide sequence of the gene encoding C. tropicalis citrate synthase, CtCIT, revealed the presence of a 79-bp intron in the N-terminal region. Sequences essential as yeast splicing motifs were present in this intron. When the CtCIT gene including its intron was introduced into Saccharomyces cerevisiae using the promoter UPR-ICL, citrate synthase activity was highly induced, which strongly indicated that this intron was correctly spliced in S. cerevisiae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...