Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 49 (1982), S. 97-111 
    ISSN: 1573-4919
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary Ornithine transcarbamylase (ornithine carbamoyltransferase, EC 2.1.3.3), the second enzyme of urea synthesis, is localized in the matrix of liver mitochondria of ureotelic animals. The enzyme is encoded by a nuclear gene, synthesized outside the mitochondria, and must then be transported into the organelle. The rat liver enzyme is initially synthesized on membrane-free polysomes in the form of a larger precursor with an amino-terminal extension of 3 400–4 000 daltons. In rat liver slices and isolated rat hepatocytes, the pulse-labeled precursor is first released into the cytosol and is then transported with a half life of 1 2 min into the mitochondria where it is proteolytically processed to the mature form of the enzyme. The precursor synthesized in vitro exists in a highly aggregated form and has a conformation different from that of the mature enzyme. The precursor has an isoelectric point (pI = 7.9) higher than that of the mature enzyme (pI = 7.2). The precursor synthesized in vitro can be taken up and processed to the mature enzyme by isolated rat liver mitochondria. The mitochondrial transport and processing system requires membrane potential and a high integrity of the mitochondria. The transport and processing activities are conserved between mammals and birds or amphibians and is presumably common to more than one precursor. Potassium ion, magnesium ion, and probably a cytosolic protein(s), in addition to the transcarbamylase precursor and the mitochondria, are required for the maximal transport and processing of the precursor. A mitochondrial matrix protease which converts the precursor to a product intermediate in size between the precursor and the mature subunit has been highly purified. The protease has an estimated molecular weight of 108 000 and an optimal pH of 7.5–8.0, and appears to be a metal protease. The protease does not cleave several of the protein and peptide substrates tested. The role of this protease in the precursor processing remains to be elucidated. Rats subjected to different levels of protein intake and to fasting show significant changes in the level of enzyme protein and activity of ornithine transcarbamylase. The dietary-dependent changes in the enzyme level are due mainly to an altered level of functional mRNA for the enzyme. In contrast, during fasting, the increase in the enzyme level is associated with a decreased level of translatable mRNA forthe enzyme. Pathological aspects of ornithine transcarbamylase including the enzyme deficiency and reduced activities of the enzyme in Reye's syndrome are also described. A possibility that impaired transport of the enzyme precursor into the mitochondria leads to a reduced enzyme activity, is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Complementary DNA clones for phosphoribosylpyrophosphate synthetase subunits I and II (PRS I and PRS II) were used to determine the chromosomal localization of the corresponding human genes. Southern blot analysis of genomic DNAs isolated from human placenta and a panel of humanmouse somatic cell hybrids revealed that the rat PRS I cDNA probe detected at least five human specific DNA segments (23, 20, 14.5, 6.7, and 4.3 kb) in BamHI digests. The 23-, 14.5-, and 6.7-kb DNA segments were detected only if the hybrids contained human chromosome X or translocation chromosome 7p + (7qter〉7p22::Xq21〉Xqter), indicating the location of these segments to Xq21-qter (PRPS1). The 20- and 4.3-kb DNA segments did not cosegregate with the other three segments, and spot blot hybridization analysis using flow-sorted human chromosomes indicated that these are the PRPS1-related genes (PRPS1L1 and PRPS1L2) and could be assigned to chromosomes 7 and 9, respectively. The human-specific PRS II cDNA probe revealed a BamHI DNA segment (17 kb), which segregated condordantly with the X chromosome but not with the PRPS1 gene. We surmise that the gene for PRS II (PRPS2) is located at a different region of the X chromosome, namely Xpter-q21.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...