Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 30 (1991), S. 4612-4619 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The yeast Candida glabrata rapidly autoactivates transcription of the AMT1 gene in response to potentially toxic copper levels through the copper-inducible binding of the Amt1 transcription factor to a metal response element (MRE) within a positioned nucleosome. Our previous studies have characterized the role of a 16 bp homopolymeric dA:dT DNA structural element in facilitating rapid Amt1 access to the AMT1 promoter nucleosomal MRE. In this study, we have used the genetically more facile yeast Saccharomyces cerevisiae to identify additional cellular factors that are important for promoting rapid autoactivation of the AMT1 gene in response to toxic copper levels. We demonstrate that the Swi/Snf nucleosome remodelling complex and the histone acetyltransferase Gcn5 are both essential for AMT1 gene autoregulation, and that the requirement for these chromatin remodelling factors is target gene specific. Chromatin accessibility measurements performed in vitro and in vivo indicate that part of the absolute requirement for these factors is derived from their involvement in facilitating nucleosomal access to the AMT1 promoter MRE. Additionally, these data implicate the involvement of Swi/Snf and Gcn5 at multiple levels of AMT1 gene autoregulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; metal ion toxicity ; vacuole ; protein sorting ; gene regulation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The metal ions, Cu2+/+ and Fe3+/2+, are essential co-factors for a wide variety of enzymatic reactions. However, both metal ions are toxic when hyper-accumulated or maldistributed within cells due to their ability to generate damaging free radicals or through the displacement of other physiological metal ions from metalloproteins. Although copper transport into yeast cells is apparently independent of iron, the known dependence on Cu2+ for high affinity transport of Fe2+ into yeast cells has established a physiological link between these two trace metal ions. In this study we demonstrate that proteins encoded by genes previously demonstrated to play critical roles in vacuole assembly or acidification, PEP3, PEP5 and VMA3, are also required for normal copper and iron metal ion homeostasis. Yeast cells lacking a functional PEP3 or PEP5 gene are hypersensitive to copper and render the normally iron-repressible FET3 gene, encoding a multi-copper Fe(II) oxidase involved in Fe2+ transport, also repressible by exogenous copper ions. The inability of these same vacuolar mutant strains to repress FET3 mRNA levels in the presence of an iron-unresponsive allele of the AFT1 regulatory gene are consistent with alterations in the intracellular distribution or redox states of Fe3+/2+ in the presence of elevated extracellular concentrations of copper ions. Therefore, the yeast vacuole is an important organelle for maintaining the homeostatic convergence of the essential yet toxic copper and iron ions. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...