Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1459
    Keywords: Key words Multiple sclerosis ; Magnetic resonance imaging ; Trial design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Serial magnetic resonance imaging (MRI) detects substantial subclinical disease activity in multiple sclerosis (MS) and is presently included in most treatment trials as an objective outcome measure. Our current knowledge of the role of MRI in MS treatment trials is derived from very limited patient studies, and the aim of this paper is to identify strategies to optimize the use of MRI in monitoring disease activity in treatment trials. The number of active lesions revealed by MRI can be used as the primary outcome measure in exploratory treatment trials. With monthly scanning, the majority of active lesions will be seen by virtue of a limited number of new areas of gadolinium enhancement. The contrast between enhancing lesions and background could be increased by: (1) using higher doses of gadolinium, (2) suppressing the background signal with magnetization transfer, (3) delayed scanning, or (4) a combination of these. Following a systematic comparison of those approaches, the effect on the sensitivity in detecting active lesions should be analysed with reference to the power of treatment trials. We present preliminary results showing marked agreement between observers in reporting enhancing lesions; however, with new acquisition strategies, the observer variation should be re-established in a multicentre fashion. In definitive trials, the increase in total lesion load serves as a secondary outcome measure. Since the majority of lesions making up the total lesion load are inactive during the study, spatial resolution should be maximized in order to preclude any artificial changes in lesion load to be superimposed (noise) upon the relatively small actual change (information). Reduction in measurement error can be attempted by improved acquisition techniques with increased lesion to background contrast. More importantly, improvement in quantitation techniques is warranted. With a 6% coefficient of variation in measuring a baseline lesion load, we calculate the standard error of the mean yearly increase in T2 lesion load (typically 10% in untreated patients) in a treatment arm of 124 patients to be 7.5%. A comparison of several quantitation techniques should be performed in a multicentre longitudinal fashion in order to include variation caused by both scanner and segmentation technique, in addition to biological activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1459
    Keywords: Key words Multiple sclerosis ; Brain ; Spinal cord ; Magnetic ; resonance imaging ; FLAIR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recent reports have suggested that fluid attenuated inversion recovery (FLAIR) is a technique superior to conventional (CSE) or fast spin echo (FSE) T2-weighted sequences in detecting intrinsic lesions both in the brain and spinal cord. We report our experience of an inversion recovery prepared FSE, which we refer to as fast FLAIR, in a comparative study of ten patients with clinically definite multiple sclerosis (MS) who underwent cervical cord and brain imaging with both FSE and fast FLAIR. The results showed that in the cerebral hemispheres fast FLAIR detected more lesions than FSE (P 〈 0.001). However, FSE detected more lesions than fast FLAIR in the posterior fossa (P = 0.02) and in the cord fast FLAIR was much inferior detecting only 2 of 33 lesions seen on FSE. Estimating the T2 relaxation times of lesions in each of three areas (periventricular, posterior fossa, cervical cord) showed that the T2 value of posterior fossa and cervical cord lesions was significantly lower than that of periventricular lesions, suggesting that the lesion composition is different and consequently their imaging appearances are different. In conclusion, although fast FLAIR improves the detection of MS lesions in the cerebral hemispheres, its substantially lower sensitivity in the posterior fossa and spinal cord is a potentially important limitation to its use as a tool for the diagnosis of MS and for monitoring therapies. Further studies are needed to elucidate the mechanisms underlying the loss of sensitivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1459
    Keywords: Multiple sclerosis ; Magnetic resonance imaging ; Gadolinium ; Cytokines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study we assessed the subclinical disease activity in 45 patients with primary progressive, secondary progressive or relapsing-remitting multiple sclerosis (MS). The patients had gadolinium-enhanced brain MRI scans, which were analysed using a semiquantitative method both for lesion load and for degree of enhancement. At the same time cerebrospinal fluid (CSF) and serum samples were collected and, from these, cytokine levels were measured in most cases by enzyme-linked immunoassay using commercially available kits. Enhancing lesions on MRI were found in 73% of the patients. The sensitivity of this test was greatly increased by our method of analysis as far as the primary progressive patients are concerned (70% vs 40% for conventional evaluation). CSF interleukin-1 β (IL-1 β) levels were above the normal range in 22% and IL-6 levels in 13% of patients, while tumour necrosis factor alpha (TNF-α) was undetectable or below the upper normal limits in all the samples tested. Serum IL-1 β was above the normal limits in 40%, IL-6 in 42% and TNF-α in 7% of patients. No significant differences in cytokine profiles were found between the clinical subgroups. This study confirms the high sensitivity of gadolinium-enhanced MRI in detecting MS activity, which was further increased by our method of analysis. Longitudinal studies performed with more sensitive immunological techniques are needed to define better the relationship between cytokine, clinical and MRI data in MS patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...