Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 54 (1990), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Current evidence indicates that glutamate acting via the N-methyl-d-aspartate (NMDA) receptor/ion channel complex plays a major role in the neuronal degeneration associated with a variety of neurological disorders. In this report the role of glycine in NMDA neurotoxicity was examined. We demonstrate that NMDA-mediated neurotoxicity is markedly potentiated by glycine and other amino acids, e.g., d-serine. Putative glycine antagonists HA-966 and 7-chlorokynurenic acid were highly effective in preventing NMDA neurotoxicity, even in the absence of added glycine. The neuroprotective action of HA-966 and 7-chlorokynurenic acid, but not that of NMDA antagonists 3-(2-carboxypiperazine-4-yl)propylphosphonate and MK-801, could be reversed by glycine. These results indicate that glycine, operating through a strychnine-insensitive glycine site, plays a central permissive role in NMDA-mediated neurotoxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Activation of phosphoinositide metabolism is an early event in signal transduction for a number of neurotransmitters and hormones. In primary cultures of rat neurocortical cells, various excitatory amino acids stimulate inositol phosphate production with a rank order of potency of quisqualate 〉 ibotenate 〉 glutamate 〉 kainate, N-methyl-d-aspartate 〉 α-amino-3-hydroxyl-5-methyl-4-isoxazole propionate. This response to excitatory amino acids was insensitive to a variety of excitatory amino acid antagonists including 6-cyano-7-nitroquinoxaline-2,3-dione, 3–3(2-carboxypiperazine-4-yl)propyl-l-phosphonate, and 2-amino-4-phosphonobutyrate. The individual responses of quisqualate-, ibotenate-, and kainate-stimulated inositol phosphate production were not additive. These results suggest that phosphoinositide metabolism activated by excitatory amino acids is mediated by a unique quisqualate-preferring receptor that is not antagonized by known N-methyl-d-aspartate and non-N-methyl-d-aspartate antagonists, and is relatively insensitive to α-amino-3-hydroxyl-5-methyl-4-isoxazole propionate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...