Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Public Health 8 (1987), S. 253-287 
    ISSN: 0163-7525
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Vestibular system ; Galvanic stimulation ; Posture ; Electromyogram ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Application of a small (around 1 mA), constant electric current between the mastoid processes (galvanic stimulation) of a standing subject produces enhanced body sway in the approximate direction of the ear behind which the anode is placed. We examined the electromyographic (EMG) responses evoked by such stimulation in the soleus and in the triceps brachii muscles. For soleus, subjects stood erect, with their eyes closed, leaning slightly forward. The head was turned approximately 90° to the right or left relative to the feet. In averaged records (n=40), current pulses of 25 ms or longer modulated the EMG in a biphasic manner: a small early component (latency 62±2.4 ms, mean ± SEM) was followed by a larger late component (latency 115±5.2ms) of opposite sign, which was appropriate to produce the observed body sway. The early component produced no measurable body movement. Lengthening the duration of the stimulus pulse from 25 to 400 ms prolonged the late component of the response but had little effect on the early component. Short- and long-latency EMG responses were also evoked in the triceps brachii muscle if subjects stood on a transversely pivoted platform and had to use the muscle to maintain their balance in the anteroposterior plane by holding a fixed handle placed by the side of their hip. The latency of the early component was 41±2.6 ms; the latency of the late component was 138±4.3 ms and was again of appropriate sign for producing the observed body sway. Galvanic stimulation evoked no comparable responses in either triceps brachii or soleus muscles if these muscles were not being used posturally. The responses were most prominent if vestibular input provided the dominant source of information about postural stability, and were much smaller if subjects lightly touched a fixed support or opened their eyes. The difference in latency between the onset of the early component of the response in arm and leg muscles suggests that this part of the response uses a descending pathway which conducts impulses down the spinal cord with a velocity comparable with that of the fast conducting component of the corticospinal tract. The late component of the EMG response occurs earlier in the leg than the arm. We suggest that it forms part of a patterned, functional response which is computed independently of the early component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 129 (1999), S. 582-591 
    ISSN: 1432-1106
    Keywords: Key words Corticomotoneuronal ; Trigeminal ; Transcranial magnetic stimulation ; Motor cortex ; Map ; Ipsilateral projection ; Cross-talk ; Single motor units
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Transcranial magnetic stimulation (TCMS) was used to determine the organisation of cortical motor projections to the anterior digastric muscles in 12 normal human subjects. Two distinct types of potentials were evoked in anterior digastric with a figure-of-eight coil. A short-latency (3 ms) response appeared bilaterally on the surface electromyogram (EMG), but only ipsilaterally on intramuscular recordings: this was the result of direct stimulation of the ipsilateral trigeminal motor root. Motor evoked potentials (MEPs) were elicited in the anterior digastric muscles at variable onset latencies of around 10 ms by stimulation of scalp areas antero-lateral to the area for the first dorsal interosseous muscle of the hand. These were evoked bilaterally in relaxed anterior digastric muscles in six of the seven subjects. In the other subject, the responses in the relaxed muscle were exclusively ipsilateral. However, when the anterior digastric muscles were contracted, the responses were bilateral in all subjects. TCMS and spike-triggered averaging revealed that the bilateral responses were not due to the branching of axons from individual digastric motoneurones to muscles on each side. Because the digastric motor nucleus may contain separate populations of ipsi- and contralateral projecting motoneurones, it was necessary to study single motor-unit responses to TCMS to demonstrate a bilateral corticobulbar projection. The responses of 17 single motor units in the anterior digastric muscle to TCMS were recorded. All were activated by contralateral stimulation. Approximately 80% were also activated by ipsilateral TCMS, although one well-characterised motor unit was inhibited by ipsilateral TCMS. When bilateral activation was present, the ipsilateral responses were more secure than the contralateral responses, which may indicate an additional interneurone in the pathway to the contralateral motoneurone. The major conclusions from this study are that (1) the cortical representation of the anterior digastric muscle is antero-lateral to hand muscles; (2) the cortical projection to the anterior digastric muscles is bilateral; (3) the corticobulbar projection is stronger contralaterally than ipsilaterally but may involve at least one additional synapse; and (4) anterior digastric motoneurones do not branch to innervate the muscles bilaterally.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1459
    Keywords: Orthostatic tremor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The clinical and physiological features of six new patients with primary orthostatic tremor are described. We suggest that use of the term primary orthostatic tremor be confined to the clinical syndrome in which unsteadiness when standing is the predominant complaint and accompanied by characteristic electrophysiological findings of a rapid (frequency around 16 Hz), regular leg tremor which is not influenced by peripheral feedback, is synchronous between homologous leg muscles, and in certain postures of the upper limbs, between muscles of the arm and leg. The fast frequency of muscle activity in primary orthostatic tremor of the legs causes unsteadiness when standing (presumably due to partially fused muscle contraction) but only a fine ripple of muscle activity is visible. In contrast, the slower frequency of other leg tremors, for example essential tremor, results in obvious leg movement which is evident in many leg postures, is variable over time and can be reset by a peripheral nerve stimulus. Essential tremor and orthostatic tremor do not respond to the same therapies, suggesting differences in the pharmacological profiles of the two conditions. Accordingly, there are clinical, physiological and pharmacological differences between primary orthostatic and essential tremor. Whether these factors are sufficient to regard these tremors as separate conditions is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurology 241 (1994), S. 335-340 
    ISSN: 1432-1459
    Keywords: Myoclonus ; Mitochondrial myopathy ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Five patients from three families with the syndrome of myoclonic epilepsy and ragged red fibres (MERRF), associated with the mitochondrial DNA point mutation at position 8344, were studied neurophysiologically to determine the characteristics of their myoclonus. The findings were those of cortical reflex myoclonus, with enlarged cortical somatosensory evoked potentials and late reflex responses to peripheral nerve stimulation. Electroencephalography showed paroxysmal spike and polyspike and wave discharges, with photic sensitivity. This pattern of electrophysiological abnormalities was uniform, despite considerable variation in severity of myoclonus. Although a consistent finding, cortical reflex myoclonus is not specific to MERRF amongst myoclonic syndromes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...