Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 716-725 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two methods for generating smoothing splines are compared and applied to data from a fed-batch fermentation process. One method chose both the degree of the spline and its parameters by minimizing the generalized cross validation (GCV) function using a genetic algorithm (GA). The other method adjusted the smoothing spline to a specified chi-square goodness-of-fit, requiring prior knowledge of the measurement variability. The GCV/GA method led to excellent results with all the fermentation data records. The goodness-of-fit method gave a family of spline fits; splines with a low percentage fit extracted trends from the data, while for general use a 50% fit appeared satisfactory. The goodness-of-fit method executed more quickly than the GCV/GA method, but the GCV/GA method was more generally applicable as it chose both the degree of the spline and the amount of smoothing automatically.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 1680-1686 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Dissolved carbon dioxide and bicarbonate ions in fermentation broths can (independently) inhibit or promote microbial growth and productivity. In research facilities with a large number of fermenters, dissolved carbon dioxide sensors tend not to be used, and as a result this variable will generally go unmonitored, making the meaningful analysis of data more difficult. For aerobic fermentations, mass transfer of carbon dioxide can be described in an analogous way to oxygen transfer. The mass transfer coefficient for carbon dioxide is 0.89 times that for oxygen. The maximum dissolved carbon dioxide concentration as a function of exit gas composition is compared with the concentration obtained by assuming equilibrium between the broth and exit gas. The difference between these two concentrations is typically 20-40% of the equilibrium concentration. In large fermenters, a degree of plug flow behavior in the gas and the generally lower specific aeration rates will serve to produce a better approach to equilibrium than for research fermenters.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 956-956 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 634-637 
    ISSN: 0006-3592
    Keywords: mass spectrometer ; fermentation ; oxygen uptake rate ; noise ; bias ; filter ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The calculation of many derived fermentation variables such as the respiratory quotient (RQ) and mass transfer coefficient (KLa) requires the differences between the molar percentages of oxygen and carbon dioxide in the fermentor inlet and exit gas, called the %OUR and %CER. Noise and bias in %CER data is of order that in the exit gas carbon dioxide analysis. However, the relative amount of noise in the %OUR is one to two orders of magnitude greater than the noise in the raw oxygen analyses because the %OUR is calculated as a small difference between two large quantities. The noise in the %OUR is white with a Gaussian amplitude probability distribution of absolute standard deviation 0.0145. A chi-square filter of the %OUR data is shown to considerably improve the quality of the calculated RQ and KLa for a fermentation of Streptomyces clavuligerus. © 1992 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 819-829 
    ISSN: 0006-3592
    Keywords: on-line HPLC ; fed batch ; closed loop control ; Escherichia coli fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article describes a fully automated system for the on-line monitoring and closed-loop control of a fed-batch fermentation of recombinant Escherichia coli, and presents two case studies of its used in limiting production of unwanted byproducts such as acetic in fed-batch fermentations. The system had two components. The first components, on-line monitoring, comprised an aseptic sampling device, a microcentrifuge, and HPLC System. These instruments removed a Sample from a fermentor, spun it at high speed to separate solid and liquid components, and then automatically injected the supernatant onto an HPLC column for analysis. The second component consisted of control algorithms programmed using the LabView visual programming environment in a control computer that was linked via a remote components were linked so that results from the on-line HPLC were captured and used by the control algorithm was designed to demonstrate coarse feedback control to confirm the operability of the controller. The second case study showed how the system could be used in a more sophisticated feedings strategy providing fine control and limiting acetate concentration to a low level throughout the fermentation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...