Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 48 (1987), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Chromaffin cells both recently isolated or in culture present a high-affinity adenosine transporter with a Km value of 1 μM. When cells were exposed to nerve growth factor (NGF; 10 ng/ml), the adenosine transporter affinity decreased to 3μM. This value was maintained from 3 days after plating to the end of the culture period. A change in the transport capacity was observed, with a significant increase (˜200–260%) in NGF-cultured cells throughout the period studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 63 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We studied the effect of cultured endothelial cells on the secretion of catecholamines by cultured bovine chromaffin cells. Chromaffin cell catecholamine secretion was stimulated by either boluses of potassium (K+) or the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP). Endothelial cells inhibited the catecholamine release and stimulatory effects of K+ and DMPP. This inhibition increased with time, and in 25 min the initial stimulated secretory response (100%) to 30 mM K+ or 25 μM DMPP dropped to 45 ± 3% and 53.5 ± 2.3%, respectively. This endothelial cell-induced inhibition was blocked by the nitric oxide synthase inhibitors N-nitro-l-arginine methyl ester (l-NAME) and N-monoethyl-l-arginine (l-NMMA), and by the guanylate cyclase inhibitor methylene blue, indicating that the l-arginine/nitric oxide/ cyclic GMP pathway is involved in this endothelial cell-chromaffin cell interaction. In the absence of endothelial cells, incubation of chromaffin cells with l-NAME, l-NMMA, or methylene blue also augmented the secretagogue-induced catecholamine secretion, indicating that nitric oxide from chromaffin cells could be implicated in an autoinhibitory process of catecholamine release. These results provide indirect evidence for the presence of nitric oxide synthase in bovine adrenomedullary chromaffin cells. Our results show that there is an autoinhibitory mechanism of catecholamine release in chromaffin cells and that an additional level of inhibition is observed when cultured vascular endothelial cells are present. These two inhibitory processes may have different origins, but they appear to converge into a common pathway, the l-arginine/nitric oxide synthase/guanylate cyclase pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The effects of in vitro anoxia on the release of glutamate in isolated nerve terminals were studied. The extrasynaptosomal concentration of glutamate ([Glu]cxt) under aerobic conditions was 2.3 μM and increased to 4.9 μM after 10 min of anoxia. However, when synaptosomes were incubated in the presence of lactate plus pyruvate instead of glucose, to prevent anaerobic glycolysis, anoxia induced an eightfold increase in the [Glu]cxt The accumulation of glutamate in the external medium during anoxia was Ca2+ in dependent and insensitive to a significant reduction of the Ca2+-dependent release of the amino acid. These results indicate that a Ca2+-independent efflux of cytoplasmic glutamate occurs during in vitro anoxia in isolated nerve terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 87 (2003), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Protein kinase A and protein kinase C are involved in processes that enhance glutamate release at glutamatergic nerve terminals. However, it is not known whether these two kinases co-exist within the same nerve terminal, nor is it clear what impact their simultaneous activation may have on neurotransmitter release. In cerebrocortical nerve terminals, co-application of forskolin, which increases cAMP levels and activates protein kinase A, and 4β-phorbol dibutyrate, a direct activator of protein kinase C, synergistically enhanced the spontaneous release of glutamate. This enhancement exhibited both tetrodotoxin-sensitive and tetrodotoxin-resistant components. Interestingly, the tetrodotoxin-resistant component of release was not observed when cyclic AMP-dependent protein kinase (PKA) and calcium- and phospholipid-dependent protein kinase (PKC) were activated separately, but developed slowly after the co-activation of the two kinases, accounting for 50% of the facilitated release. This release component was dependent on voltage-dependent Ca2+ channels that opened spontaneously after PKA and PKC activation and occurred in the absence of Na+ channel firing. These data provide functional evidence for the co-existence of PKA- and PKC-signalling pathways in a subpopulation of glutamatergic nerve terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The soluble form of guanylyl cyclase (sGC) plays a pivotal role in the transduction of inter- and intracellular signals conveyed by nitric oxide. Here, a feedback inhibitory mechanism triggered by cyclic guanosine-3′,5′-monophosphate (cGMP)-dependent protein kinase (PKG) activation is described. Preincubation of chromaffin cells with C-type natriuretic peptide, which increased cGMP levels and activated PKG, or with cGMP-permeant analogue (which also activates PKG), in the presence of a broad-spectrum phosphodiesterase inhibitor, resulted in a decrease in subsequent sodium nitroprusside (SNP)-dependent cGMP elevations. This inhibitory effect was mimicked by activating a protein phosphatase and counteracted by the selective PKG inhibitor KT-5823 and by different protein phosphatase inhibitors. Immunoprecipitation of sGC from cells submitted to different treatments followed by immunodetection with antiphosphoserine antibodies (clone 4A9) showed changes in phosphorylation levels of the β subunit of sGC, and these changes correlated well with differences in SNP-elicited cGMP accumulations. Pretreatment of cells with several PKG inhibitors or protein phosphatase inhibitors produced an enhancement of SNP-stimulated cGMP rises without changing the SNP concentration required to produce half-maximal or maximal responses. Taken together, these results indicate that the catalytic activity of sGC is closely coupled to the phosphorylation state of its β subunit and that the tonic activity of PKG or its stimulation regulates sGC activity through dephosphorylation of the β subunit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...