Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present a general theoretical formulation for the characteristics of surface acoustic waves (SAW) generated by the phase velocity scanning (PVS) method that employs a scanning single laser beam (SSB) or a scanning interference fringes (SIF). In the SSB approach, a broad band SAW pulse is generated and its amplitude is coherently enhanced when the laser scanning velocity V is equal to the phase velocity νR of the SAW. The amplitude of the SAW follows a resonance curve represented by a sinc function of the scanning velocity V, but different spatial frequency components in the SSB significantly suppress the side lobes of the resonance curve. In the SIF approach, the scanning velocity νf of the fringes is determined by the intersection angle and the frequency difference ωa of the laser beams. A narrow band tone burst of SAW with frequencies higher than 100 MHz can be excited. The SAW frequency ω depends upon a characteristic time t*, defined as a propagation time of the SAW across the laser beam spot. The SAW frequency ω is identical to the frequency difference ωa when the laser pulse width T is longer than the characteristic time t*. But, the SAW frequency ω is determined as a product kfνR of the wave number of the SIF and the SAW velocity when the laser pulse width is shorter than the characteristic time. Precise frequency measurement provided by the amplitude enhancement effect and the narrow frequency bandwidth in the SIF approach make the PVS method particularly promising for the noncontact SAW velocity measurement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 2926-2928 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This letter shows an unexpected phenomenon where a surface acoustic wave (Rayleigh wave) excited by a line source with a finite length on a solid sphere propagates along the great circle in a direction perpendicular to the line source without beam spreading due to diffraction. In experiments, a piezoelectric transducer, 1.5 mm in width and 20 mm in length, was glued on a surface of a glass ball, 80 mm in diameter, as a line source with a finite length. A beam of Rayleigh waves with frequencies centered at 1.1 MHz was excited in either direction perpendicular to the transducer length. A receiving transducer with a circular aperture, 2 mm in diameter, was used in direct contact with the surface to detect the distribution of vibration over the surface of the ball. It was observed that the excited Rayleigh wave propagated along a great circle of the ball for at least four roundtrips. The beam was confined within a narrow path around the ball, the width of which was no more than 20 mm. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 62 (1993), S. 2036-2038 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present a novel method for generating 100 MHz band surface acoustic wave (SAW) by using a scanning interference fringe at the phase velocity of the SAW. The scanning interference fringe is obtained by intersecting two laser beams with different frequencies, and used as a thermoelastic source. The principle of this method is described, and experimentally demonstrated in the 110 MHz Rayleigh waves on an aluminum specimen generated by a long-pulse (140 ns) Q-switched Nd:YAG laser.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 59 (1991), S. 2384-2385 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theory is presented for the propagation of elastic waves in a plate excited by scanning a laser beam at a constant velocity. A formula for the excitation by scanning a line-focused laser beam is deduced from a general formula and analyzed extensively in a two-dimensional model. It is derived that such modes of Lamb waves are selectively excited whose phase velocities match the scanning velocity. It is also shown that major characteristics of experimental observations previously made are explained with the present model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...