Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Heat and freshwater transports through Fram Strait are understood to have a significant influence on the hydrographic conditions in the Arctic Ocean and on water mass modifications in the Nordic seas. To determine these transports and their variability reliable estimates of the volume transport through the strait are required. Current meter moorings were deployed in Fram Strait from September 1997 to September 1999 in the framework of the EU MAST III Variability of Exchanges in the Northern Seas programme. The monthly mean velocity fields reveal marked velocity variations over seasonal and annual time scales, and the spatial structure of the northward flowing West Spitsbergen Current and the southward East Greenland Current with a maximum in spring and a minimum in summer. The volume transport obtained by averaging the monthly means over two years amounts to 9.5 ± 1.4 Sv to the north and 11.1 ± 1.7 Sv to the south (1 Sv = 106 m3s−1). The West Spitsbergen Current has a strong barotropic and a weaker baroclinic component; in the East Greenland Current barotropic and baroclinic components are of similar magnitude. The net transport through the strait is 4.2 ± 2.3 Sv to the south. The obtained northward and southward transports are significantly larger than earlier estimates in the literature; however, within its range of uncertainty the balance obtained from a two year average is consistent with earlier estimates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Kongsfjorden-Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up-to-date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large-scale circulation and small-scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run-off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi-diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...