Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The short-term and long-term effects of light regime on nitrogenase activity (NA) and cyanobacterial communities in rice fields (Valencia, Spain) were examined. Daily variation in nitrogen fixation was measured during three periods of the crop cycle: tillering (formation of secondary stems in the rice plants), heading (formation of reproductive structures), and maturity. Two locations were examined over two consecutive years (1994 and 1995). Despite differences in the crop-cycle periods, location, and year, a consistent pattern of nitrogen fixation was observed, with a main activity peak in the morning and another in the late evening. Short-term experiments, performed on two cyanobacterial blooms (Nostoc sp. and Anabaena sp.) exposed to natural light under plant canopy (7% incidence irradiance), and to different light intensities under neutral density screens without plant cover (full sunlight, 43%, 26%, and 13% of incident irradiance), indicated that nitrogenase activity (NA) was dependent on both light intensity and quality. In long-term experiments, where natural communities of cyanobacteria were exposed to one month of different light intensities, changes in the species composition of the three main genera of heterocystous cyanobacteria (Nostoc, Anabaena, and Calothrix) were observed. The light intensity at which communities were exposed for one month became the optimum irradiance for NA for each cyanobacterial community. Assays performed at higher or lower irradiances showed lower NA. Nitrogen fixation followed a pattern of seasonal variation along the crop cycle. Values were low at the beginning of the crop (May), reached a maximum value at the end of the tillering stage (June), and declined thereafter until the end of the cultivation cycle (September).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Acetylene reduction assay ; Anabaena sp. ; Ammonium ; Cyanobacteria ; Nitrogen fixation ; Wetland rice fields ; Nitrogenase activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Short- and long-term experiments were conducted in the rice fields of Valencia, Spain, to determine the ecological significance of ammonium on nitrogen fixation. A significant inhibition of nitrogenase activity by ammonium, at concentrations higher than 0.5mM, was observed after 8h of incubation in short-term experiments done with a bloom of the N2-fixing cyanobacterium Anabaena sp. In a second set of short-term experiments for in situ assays of nitrogenase activity in the field, a significant correlation between nitrogenase activity and the number of N2-fixing cyanobacteria in soil was found. No significant inhibition of nitrogenase activity by ammonium at concentrations up to 2mM was observed in these assays after 24h of incubation. This lack of inhibition was probably due to the rapid decrease in ammonium content in the flood water. Only 5% of the ammonium initially added remained in the water 24h later. In the long-term experiments, nitrogenase activity was assayed in plots fertilized with 0, 70 and 140kgNha–1, over the cultivation cycle, for 5 years. A partial inhibition of nitrogenase activity by deep-placed N fertilizers was observed. Differences were only significant in 2 years. Mean results from 5 years only showed significant differences between plots fertilized with 0 and 140kgNha–1. The partial inhibition of nitrogenase activity by ammonium increased over the cultivation cycle. Inhibition was only significant in September, at the end of the cultivation cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Cyanobacteria ; `in situ' N2 fixation ; N fertilizer ; 15N balance ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study investigate the potential contribution of nitrogen fixation by indigenous cyanobacteria to rice production in the rice fields of Valencia (Spain). N2-fixing cyanobacteria abundance and N2 fixation decreased with increasing amounts of fertilizers. Grain yield increased with increasing amounts of fertilizers up to 70 kg N ha-1. No further increase was observed with 140 kg N ha-1. Soil N was the main source of N for rice, only 8–14% of the total N incorporated by plants derived from 15N fertilizer. Recovery of applied 15N-ammonium sulphate by the soil–plant system was lower than 50%. Losses were attributed to ammonia volatilization, since only 0.3–1% of applied N was lost by denitrification. Recovery of 15N from labeled cyanobacteria by the soil–plant system was higher than that from chemical fertilizers. Cyanobacterial N was available to rice plant even at the tillering stage, 20 days after N application.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...