Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: : Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (±)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D, antagonist, (±)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of α1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of α1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 〉 α1 〉 H1 antagonists), respectively. These findings represent the first demonstration of D1-(stimulatory) and D2-(inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either α1adrenergic or 5-HT receptors in endothelium on the adenylate cyclase level. These results provide strong support for the previously contemplated existence of a central dopaminergic mechanism in cerebral vessels, a notion that is clinically important.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 62 (1994), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The kinetic properties of endothelin-1 (ET-1) binding sites and the production of inositol phosphates (IPs; IP1, IP2, IP3), cyclic AMP, thromboxane B2, and prostaglandin F2α induced by various endothelins (ET-1, ET-2, ET-3, and sarafotoxin S6b) were examined in endothelial cells derived from human brain microvessels (HBECs). The presence of both high- and low-affinity binding sites for ET-1 with KD1 = 122 pM and KD2 = 31 nM, and Bmax1 = 124 fmol/mg of protein and Bmax2 = 909 fmol/mg of protein, respectively, was demonstrated on intact HBECs. ET-1 dose-dependently stimulated IP accumulation with EC50 (IP3) = 0.79 nM, whereas ET-3 was ineffective. The order of potency for displacing ET-1 from high-affinity binding sites (ET-1 〉 ET-2 〉 sarafotoxin S6b 〉 ET-3) correlated exponentially with the ability of respective ligands to induce IP3 formation. ET-1-induced IP3 formation by HBEC was inhibited by the ETA receptor antagonist, BQ123. The protein kinase C activator phorbol myristate ester dose-dependently inhibited the ET-1-stimulated production of IPs, whereas pertussis toxin was ineffective. Cyclic AMP production by HBECs was enhanced by both phorbol myristate ester and ET-1, and potentiated by combined treatment with ET-1 and phorbol myristate ester. Data indicate that protein kinase C plays a role in regulating the ET-1-induced activation of phospholipase C, whereas interaction of different messenger systems may regulate ET-1-induced accumulation of cyclic AMP. ET-1 also stimulated endothelial prostaglandin F2α production, suggesting that activation of phospholipase A2 is most likely secondary to IP3-mediated intracellular calcium mobilization because both ET-1-induced IP3 and prostaglandin F2α were inhibited by BQ123. These findings are the first demonstration of ET-1 (ETA-type) receptors linked to phospholipase C and phospholipase A2 activation in HBECs.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Metabolic brain disease 7 (1992), S. 125-137 
    ISSN: 1573-7365
    Schlagwort(e): adrenergic receptors ; cAMP ; cerebrovascular endothelium ; adenylate cyslase.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Cultured endothelium derived from three microvascular fractions of human brain was used to characterize adrenergic receptors coupled to adenylate cyclase activity. Catecholamines (norepinephrine, epinephrine) and their analogs (isoproterenol, phenylephrine, 6-fluoronorepinephrine) dose-dependently stimulated endothelial production of cAMP. Antagonists for ß1 and ß2receptors (propranolol, atenolol, and butoxamine) and for α1-receptors (prazosin) dose-dependently blocked cAMP formation induced by the tested adrenergic agonists. Clonidine, an ga2〉α1-agonist, also inhibited isoproterenol-stimulated production of cAMP while yohimbine (α2〉α1 antagonist) augmented the norepinephrine or epinephrine-induced accumulation of cAMP. Cholera toxin-induced ADP ribosylation of the stimulatory guanine nucleotide binding protein (Gs) abolished the stimulatory effect of norepinephrine, epinephrine, phenylephrine or 6-fluoronorepinephrine on cAMP formation. ADP ribosylation of the inhibitory guanine nucleotide binding protein (Gi) by pertussis toxin had no effect on either phenylephrine-or 6-fluoronorepinephrine-induced production of cAMP while it increased the norepinephrine and epinephrine-induced accumulation of cAMP. These findings represent the first documentation of ß1-, ß2-, α1 and α 2-adrenergic receptors linked to adenylate cyclase in endothelium derived from human brain microvasculature. These data also indicate that activation of endothelial α1 -adrenergic receptors is mediated by a signal transduction mechanism associated with Gs protein. The results strongly support the presence of various receptor-controlled adrenergic regulatory mechanisms on human cerebromicrovascular endothelium.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...