Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology techniques 10 (1996), S. 133-140 
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract An experimental study to assess the partition of 3 binary protein mixtures when foam separated is presented (proteins considered were bovine serum albumin (BSA), conalbumin and lysozyme). Results show that selective partition of protein can be achieved and under certain conditions it is possible to strip the initial solution of BSA. However, purity of the foam phase is limited due to the non-selective carry-up of other proteins in the interstitial liquid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 801-807 
    ISSN: 0006-3592
    Keywords: foaming ; fermentations ; biochemical basis ; biosurfactants ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A detailed physico-chemical analysis of two foaming fungal fermentations was carried out to identify that key groups of compounds responsible for foam formation. Fermentations were carried out on a 20-L scale in a stirred aerated tank, over 7 days, using a commercial, defined medium. The organisms investigated were Penicillium herqueii, a hyphomycete, and an unidentified Ingoldian fungus. Samples of broth and, where possible, foam were analyzed to determine which groups of compounds were concentrated into generated foams. Surface tension, bulk viscosity, and antifoam A concentration were additionally determined in broth samples. To date the cause of foaming in fermentations has been attributed to the surfactant properties of extracellular proteins. This assumption was tested and found to be incomplete as many additional groups of biochemicals were found to be enriched into the foam. The results of the investigation revealed the presence of proteins, carbohydrates, α-keto acids, and lipophilic biosurfactants, particularly extracellular pigments, enriched within stable foams. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 66 (1996), S. 327-339 
    ISSN: 0268-2575
    Keywords: direct steam injection ; steam bubbles ; steam jets ; bubble oscillations ; steam injectors ; flow regime map ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Continuous direct steam injection systems are used in industry to rapidly raise the temperature of process streams either for heating or for sterilization purposes. High heat transfer rates can be achieved using this method, as compared with other methods e.g. shell and tube heat exchangers. Currently, there are no rational procedures available for designing steam injectors for stable operation. Flow visualization studies and pressure measurements have shown that three flow regimes; bubbling, jetting and intermittent steam/water flow exist, in direct steam injection into continuously flowing water. These flow regimes are a function of process conditions and orifice diameter. A semi-quantitative flow regime map for a range of process conditions has been drawn up. Bubbly flows give rise to the highest levels of noise due to bubble oscillations. This type of flow should therefore be avoided. The most stable flow regime, in terms of noise levels generated and hydrodynamic considerations is the jetting regime. Models have been derived for each flow regime; good agreement is found between experimental and theoretical data. A dimensionless number (Bubble/Jet number) has been defined, which can be used to predict transitions between bubbling and jetting flows. This dimensionless number, together with the flow regime map can be used to design stable, relatively quiet steam injection systems.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...