Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 26 (1987), S. 1095-1098 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 7581-7591 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The pressure dependences of the internal Raman-active modes of solid pyridine and pyridine-d5 in both the crystalline and glassy modifications as well as of the complexes Zn(py)2Cl2, Ni(py)2Cl2, and Ni(py)4Cl2 are reported. When pyridine is frozen by the application of pressure, some ring modes as well as those involving the hydrogen atoms reflect this transformation. Upon the coordination of pyridine to metal ions, the ring vibrations show appreciable blue shifts. The pressure dependences of ν1, the C–C stretching mode, and ν12, the in-plane ring bending mode of the pyridine rings, are discussed in detail. The unusually high d5–h5 isotopic ratio of ν12 and its contrasting pressure dependences in the liquid and condensed phases of pyridine-d5 are explained. The association of pyridine molecules in the condensed phase does not occur through hydrogen bonds and the C–H stretching modes, in particular, show that repulsive intermolecular forces become very significant at higher pressures. The ratio of the intensities Iν12/Iν1 varies linearly with the strength of the M–N bonds in a series of pyridine complexes and a correlation also exists between Iν12/Iν1 and ∂ν12/∂p. The vibrations ν1 and ν2 are coupled through Fermi resonance in pyridine and its complexes and the pressure dependence of the Fermi resonance constant W is calculated for Zn(py)2Cl2. The C–H stretching modes reflect the presence of more than one distinct pyridine group in the lattice and are of much lower intensity than in complexes where only one distinct pyridine group is found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 89 (1985), S. 4546-4549 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...