Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Callosum ; Cortex ; Fluorescent retrograde tracing ; Electrophysiology ; Corticospinal branching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In rat the presence of axon collaterals from corticospinal neurons to the contralateral hemisphere has been investigated by means of anatomical and electrophysiological techniques. Anatomical Experiments. Several combinations of fluorescent retrograde tracers were used. In eight rats injections of Evans Blue, “True Blue”, “Fast Blue” or DAPI-Primuline were made in areas 10, 6, and 4 and in the most medial part of the S1 granular cortex of one hemisphere, 1.5 mm below cortical surface. These injections were combined with injections of “Fast Blue”, DAPI-Primuline, “Granular Blue”, “Nuclear Yellow”, or Bisbenzimide in the ipsilateral corticospinal tract in the C2 segment. Survival times of the animals varied according to the tracers used. In the non-injected hemisphere the retrogradely labeled corticospinal neurons were present in layer V of especially areas 10, 6, 4 and the medial portion of the S1 granular cortex. However, the retrogradely labeled callosal neurons in these areas were present in all layers except layer I. The labeled callosal and corticospinal neurons in layer V were intermingled and frequently situated very close to one another. However, with none of the tracer combinations were double labeled neurons observed. Electrophysiological Experiments. In six rats, layer V neurons of hindlimb-sensorimotor cortex were tested for antidromic responses to stimulation of contralateral corticospinal tract (CST) and corpus callosum (CC). Eighty-five CST neurons were identified, none of which responded antidromically to CC shocks. Eighty-two layer V neurons were identified which responded antidromically to CC shocks, but none of them responded antidromically to CST shocks. CC shocks elicited strong synaptic responses in CST neurons and vice versa. Depth measures indicated extensive intermingling of CST and CC neurons. From both sets of findings it was concluded that, in rat, CST neurons do not give rise to callosal collaterals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 68 (1987), S. 565-578 
    ISSN: 1432-1106
    Keywords: Retrograde fluorescent double labeling ; Branching neurons ; Descending propriospinal neurons ; Ascending propriospinal neurons ; Ascending supraspinal neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Branching neurons giving rise to ascending and descending collaterals were studied in the cervical spinal cord of the rat. After unilateral injection of two retrograde fluorescent tracers, i.e. DY.2HCl at T2 or more caudal levels and TB at C1 or more rostral levels, many DY-TB double-labeled neurons were found in C3 to C8. These neurons were located bilaterally throughout the spinal grey matter, as well as in the lateral spinal nucleus (LSN). However, no double-labeled neurons could be detected in the laminae I and II on either side. The double-labeled neurons must represent branching neurons giving rise to a collateral ascending to the rostral injection-site or above, and another collateral descending to the caudal injection-site or below. The descending collaterals were found to extend to various spinal levels, including the lumbosacral cord. However, most of them terminated at shorter distances from their parent cell bodies; thus 20% of the C3–C8 neurons projecting to C1 or above had a descending collateral reaching T2, 8% had a collateral reaching T9, and 3% a collateral reaching L2/L3. The ascending collaterals of the majority of the branching neurons passed into the most caudal part of the medulla oblongata, and about half of these collaterals reached the level of the rostral part of the inferior olive. In regard to the neurons located in the segments C5–C8, about 13% of those projecting to T2 or below distribute an ascending collateral restricted to C2–C4, while 29% of those had an ascending collateral to C1 or above.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    British journal of dermatology 126 (1992), S. 0 
    ISSN: 1365-2133
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Retrograde fluorescent double-labeling ; Branching neurons ; Propriospinal neurons ; Postsynaptic dorsal column neurons ; Spinothalamic neurons ; Spinotectal neurons ; Lateral spinal nucleus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Branching neurons with descending propriospinal collaterals and ascending collaterals to the dorsal medulla, the thalamus and the tectum were studied in the rat's cervical spinal cord (C1–C8), using the retrograde fluorescent double-labeling technique: Diamidino Yellow Dihydrochloride (DY) was injected in the cord at T2, True Blue (TB) was injected in the brain stem. DY-labeled descending propriospinal neurons were present in all laminae, except lamina IX. They were concentrated in lamina I, laminae IV to VIII, and in the lateral spinal nucleus, LSN. TB-labeled neurons projecting to the dorsal medulla were concentrated in lamina IV and the medial parts of laminae V and VI (probably representing postsynaptic dorsal column — PSDC — neurons), but were also present in lamina I, the LSN, the lateral dorsal horn, and in laminae VII and VIII. DY-TB double-labeled neurons giving rise to both a descending propriospinal collateral and an ascending collateral to the dorsal medulla were intermingled with the TB single-labeled neurons. About 4% of the descending propriospinal neurons gave rise to an ascending collateral to the dorsal column nuclei; these double-labeled cells constitute a sizable fraction (10%) of the PSDC neurons. TB-labeled spinothalamic and spinotectal neurons were located in lamina I, the lateral cervical nucleus (LCN), the LSN, the lateral lamina V, lamina VII and VIII, lamina X and in the spinal extensions of the dorsal column nuclei, predominantly contralateral to the TB injections. DY-TB double-labeled neurons were present throughout C1–C8 in the LSN, lateral lamina V, lamina VIII, ventromedial lamina VII, and lamina X. Only very few were observed in lamina I and the LCN, and none in the spinal extensions of the dorsal column nuclei. The double-labeled neurons constituted only a minor fraction of all labeled neurons; 3–5% of the spinothalamic neurons and about 1–7% of the spinotectal neurons were double-labeled. Conversely, only about 1% of the labeled descending propriospinal neurons gave rise to an ascending spinothalamic collateral, and even fewer (0.1 to 0.6%) to a collateral to the dorsal midbrain. The LSN displayed the highest relative content of branching neurons. Up to 20% of its ascending spinothalamic and spinotectal neurons and up to 8% of its descending propriospinal neurons were found to be branching neurons, indicating that the LSN constitutes an unique cell-group in the rat spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Retrograde fluorescent double-labeling ; Branching neurons ; Descending propriospinal neurons ; Spinocerebellar neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the cervical spinal cord of the rat and the cat, the distributions of spinocerebellar and of descending propriospinal neurons were investigated using the retrograde fluorescent double-labeling technique. Moreover, a search was made for the presence of neurons with both ascending spinocerebellar and descending propriospinal axoncollaterals. Diamidino Yellow Dihydrochloride (DY) was injected at T2, while True Blue (TB) (in rats) or Fast Blue (FB) (in cats) was injected in the cerebellum. The distributions of labeled neurons were very similar in the rat and the cat. DY-labeled propriospinal neurons, projecting to T2 or below, were most numerous in lamina I and laminae IV to VIII. In the rat, such neurons were also present in the lateral spinal nucleus (LSN). TB- or FB-labeled spinocerebellar neurons were concentrated in the central cervical nucleus (CCN) at C1-C4, in the central part of lamina VII at C5-T1, in the medial part of lamina VI and the adjoining dorsomedial part of lamina VII at C2/C3-T1, and in Clarke's column. They were also found in lamina V at C1 and C7-T1, and in lamina VIII at all levels. In both species only very few DYTB/FB double-labeled neurons, representing neurons with branching axons, were observed; in C1-T1, only about 0,5% of all TB/FB-labeled Spinocerebellar neurons and about 0,05% of all DY-labeled descending propriospinal neurons were double-labeled. The double-labeled neurons were all located centrally in lamina VII at C5-T1, but even in that area they constituted not more than 1,5% (rat) and 4% (cat) of the labeled spinocerebellar neurons. These findings indicate that, in the cervical cord of the rat and the cat, descending propriospinal neurons and spinocerebellar neurons are to a large extent separate populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1434-9949
    Keywords: Interleukin-8 ; IL-8 ; Synovial Fluid ; IL-8
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary IL-8 was measured in knee joint synovial fluid of 60 patients with rheumatoid arthritis, 8 with gout, 6 with osteoarthritis and 4 with meniscus lesions. IL-8 could be demonstrated in most SF samples. The highest levels were observed in rheumatoid joint effusions, yet mean levels were not significantly different between the different subgroups (mean±SE; RA 1537±3049 pg/ml, gout 570±952 pg/ml, OA/ML 178±188 pg/ml). In RA patients, IL-8 levels could not be related to various serological, clinical or radiological parameters. However, a correlation was observed between SF levels of IL-8 with those of lactate, LDH, β2-microglobulin and glucose. These observations suggest that next to the laboratory parameters IL-8 will be a parameter of the activity of the local inflammatory process. The results also demonstrate that IL-8 is not a disease-specific marker of joint inflammation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...