Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 141-143 (July 2008), p. 725-730 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: Aluminum alloys are increasingly used in automotive and aeronautic applications toproduce high performance, lightweight parts. Among the reasons for this, is the emergence of highintegrity processes (HIP), which widens the field of application for cast aluminum alloys. In fact,metallurgical quality and consistency that characterize components produced by HIP are necessaryfor critical safety components. In addition to attaining maximum strength, critical safetycomponents need to be ductile and resistant to cyclic loading. According to the North American DieCasting Association, rheocasting is a high integrity process capable of producing parts with fewerdefects than conventional casting process. Rheocast components are known to have bettermechanical properties than permanent mold castings. Moreover, they can be heat-treated which isimpractical in the case of classical die cast components. However, the fatigue behavior of rheocastaluminum alloys has been investigated since about 2000 and few results have been published onthis subject. This paper reviews the studies of fatigue behavior of aluminum semi-solid castcomponents. Published experimental results on high cycle fatigue resistance (S-N diagrams), longcrack propagation, crack closure effects and short crack particularities are presented
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 10 (1987), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— Fatigue life prediction of welded joints needs an accurate and exhaustive theoretical Fracture Mechanics characterization of weld toe crack propagation. The method proposed by Albrecht et al. leads rapidly to accurate solutions of the LEFM δK-parameter. However, non-LEFM short crack behavior within the notch (weld toe) plastic zone must be taken into account. Available information on notch fatigue is surveyed, and practical cases where short crack growth is likely to occur are identified. Based on an elastoplastic finite element analysis, the LEFM validity limits and errors resulting from the misuse of LEFM in fatigue life prediction are quantified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 34 (1994), S. 208-216 
    ISSN: 1741-2765
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract An experimental technique to monitor the length and the opening level of a short fatigue crack is presented. It is based on the progressive decrease with crack length of the response of miniature strain gages installed on the surface near the crack plane. A first gage installed close to the crack plane can monitor cracks from 10 μm in depth to half a millimeter where the response saturates. Other gages at larger distances from the crack plane are less sensitive but can monitor longer cracks. The response is measured so that it is independent of strain-gage calibration, Young's modulus and Poisson's ratio. The paper first presents the basic principles and possibilities of the technique as well as a finite-element analysis performed on automatic welded joints with straight-fronted cracks for which the technique has been developed. The results give a correlation between gage response, crack length and gage location and the conditions of replacement of a gage reaching saturation. The practical exploitation of the technique has required further work to derive a continuous calibration of the gage response that includes corrections to account for the gage finite dimensions and the crack-plane inclination. This calibration is shown to give crack lengths that compare well with fractographic marks and typical results that have been obtained on short crack growth at the weld toe are presented. In particular, the resolution of the technique is put into evidence with results on the initial growth of a 0.1 mm nonpropagating crack. The paper finally points out the distinctive features that appear in current works to adapt the technique to the growth of semi-elliptical cracks of low and high aspect ratio.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...