Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical imaging and vision 9 (1998), S. 5-27 
    ISSN: 1573-7683
    Keywords: linear scale-space theory ; similarity jet ; differential geometry ; integral geometry ; affine connection ; metric ; structure equations ; Bianchi identities ; torsion ; curvature ; translation vector field ; affine rotation vector fields ; superposition principles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Linear scale-space theory provides a useful framework to quantify the differential and integral geometry of spatio-temporal input images. In this paper that geometry comes about by constructing connections on the basis of the similarity jets of the linear scale-spaces and by deriving related systems of Cartan structure equations. A linear scale-space is generated by convolving an input image with Green's functions that are consistent with an appropriate Cauchy problem. The similarity jet consists of those geometric objects of the linear scale-space that are invariant under the similarity group. The constructed connection is assumed to be invariant under the group of Euclidean movements as well as under the similarity group. This connection subsequently determines a system of Cartan structure equations specifying a torsion two-form, a curvature two-form and Bianchi identities. The connection and the covariant derivatives of the curvature and torsion tensor then completely describe a particular local differential geometry of a similarity jet. The integral geometry obtained on the basis of the chosen connection is quantified by the affine translation vector and the affine rotation vectors, which are intimately related to the torsion two-form and the curvature two-form, respectively. Furthermore, conservation laws for these vectors form integral versions of the Bianchi identities. Close relations between these differential geometric identities and integral geometric conservation laws encountered in defect theory and gauge field theories are pointed out. Examples of differential and integral geometries of similarity jets of spatio-temporal input images are treated extensively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical imaging and vision 9 (1998), S. 103-139 
    ISSN: 1573-7683
    Keywords: linear scale-space ; exchange of energy ; similarity ; diffusion equation ; master equations ; difference equations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In the past decades linear scale-space theory was derived on the basis of various axiomatics. In this paper we revisit these axioms and show that they merely coincide with the following physical principles, namely that the image domain is a Galilean space, that the total energy exchange between a region and its surrounding is preserved under linear filtering and that the physical observables should be invariant under the group of similarity transformations. These observables are elements of the similarity jet spanned by natural coordinates and differential energies read out by a vision system. Furthermore, linear scale-space theory is extended to spatio-temporal images on bounded and curved domains. Our theory permits a delay-operation at the present moment which is in agreement with the motion detection model of Reichardt. In this respect our theory deviates from that of Koenderink which requires additional syntactical operators to realise such a delay-operation. Finally, the semi-discrete and discrete linear scale-space theories are derived by discretising the continuous theories following the theory of stochastic processes. The relation and difference between our stochastic approach and that of Lindeberg is pointed out. The connection between continuous and (semi-)discrete sale-space theory for infinitely high scales observed by Lindeberg is refined by applying appropriate scaling limits. It is shown that Lindeberg's requirement of normalisation for one-dimensional discrete Green's functions can be incorporated into our theory for arbitrary dimensional discrete Green's functions, parameter determination can be avoided, and the requirement of operation at even and odd coordinates sum can be guaranteed simultaneously by taking a normalised linear combination of the identity operator and the first step discrete Green's functions. The new discrete Green's functions are still intimately related to the continuous Green's functions and appear to coincide with pyramidal discrete Green's functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7683
    Keywords: singular points ; scalar images ; topology ; catastrophes ; scale space
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Singular points of scalar images in any dimensions are classified by a topological number. This number takes integer values and can efficiently be computed as a surface integral on any closed hypersurface surrounding a given point. A nonzero value of the topological number indicates that in the corresponding point the gradient field vanishes, so the point is singular. The value of the topological number classifies the singularity and extends the notion of local minima and maxima in one-dimensional signals to the higher dimensional scalar images. Topological numbers are preserved along the drift of nondegenerate singular points induced by any smooth image deformation. When interactions such as annihilations, creations or scatter of singular points occurs upon a smooth image deformation, the total topological number remains the same. Our analysis based on an integral method and thus is a nonperturbative extension of the order-by-order approach using sets of differential invariants for studying singular points. Examples of typical singularities in one- and two-dimensional images are presented and their evolution induced by isotropic linear diffusion of the image is studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1619-7089
    Keywords: Key words: SPET ; Scatter compensation ; Iterative reconstruction ; Acceleration techniques
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Three-dimensional (3D) iterative maximum likelihood expectation maximization (ML-EM) algorithms for single-photon emission tomography (SPET) are capable of correcting image-degrading effects of non-uniform attenuation, distance-dependent camera response and patient shape-dependent scatter. However, the resulting improvements in quantitation, resolution and signal-to-noise ratio (SNR) are obtained at the cost of a huge computational burden. This paper presents a new acceleration method for ML-EM: dual matrix ordered subsets (DM-OS). DM-OS combines two acceleration methods: (a) different matrices for projection and back-projection and (b) ordered subsets of projections. DM-OS was compared with ML-EM on simulated data and on physical thorax phantom data, for both 180° and 360° orbits. Contrast, normalized standard deviation and mean squared error were calculated for the digital phantom experiment. DM-OS resulted in similar image quality to ML-EM, even for speed-up factors of 200 compared to ML-EM in the case of 120 projections. The thorax phantom data could be reconstructed 50 times faster (60 projections) using DM-OS with preservation of image quality. ML-EM and DM-OS with scatter compensation showed significant improvement of SNR compared to ML-EM without scatter compensation. Furthermore, inclusion of complex image formation models in the computer code is simplified in the case of DM-OS. It is thus shown that DM-OS is a fast and relatively simple algorithm for 3D iterative scatter compensation, with similar results to conventional ML-EM, for both 180° and 360° acquired data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 31 (1999), S. 107-110 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 31 (1999), S. 145-158 
    ISSN: 1573-1405
    Keywords: integral transformations ; orientation analysis ; scale space ; complete systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract A unitary approach for locally apertured orientation analysis of 2D and 3D scalar images is proposed. The size of the local aperture (the scale) needed for the orientation representation induces in general a lost of spatial acuity, or blur. Our construction permits a compensation of the blur by a reconstruction procedure. For this purpose, a special scale-dependent orientation bundle (map of the visual space into function of both position and orientation) is build from the local Gaussian-derivatives jet of a scalar image. In this construction there is an invertible relation between the orientation bundle and the original image. This invertible transformation is used to regain the original acuity in the spatial domain after analyzing orientation features at any given scale. The approach turns out to be highly effective for the detection of elongated structures and for removal of elongated artifacts in 2D images.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 34 (1999), S. 29-67 
    ISSN: 1573-1405
    Keywords: linearised shortening flow ; frame field ; metric ; connection ; torsion ; curvature ; scale-space ; similarity jet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract The geometry of a space curve is described in terms of a Euclidean invariant frame field, metric, connection, torsion and curvature. Here the torsion and curvature of the connection quantify the curve geometry. In order to retain a stable and reproducible description of that geometry, such that it is slightly affected by non-uniform protrusions of the curve, a linearised Euclidean shortening flow is proposed. (Semi)-discretised versions of the flow subsequently physically realise a concise and exact (semi-)discrete curve geometry. Imposing special ordering relations the torsion and curvature in the curve geometry can be retrieved on a multi-scale basis not only for simply closed planar curves but also for open, branching, intersecting and space curves of non-trivial knot type. In the context of the shortening flows we revisit the maximum principle, the semi-group property and the comparison principle normally required in scale-space theories. We show that our linearised flow satisfies an adapted maximum principle, and that its Green's functions possess a semi-group property. We argue that the comparison principle in the case of knots can obstruct topological changes being in contradiction with the required curve simplification principle. Our linearised flow paradigm is not hampered by this drawback; all non-symmetric knots tend to trivial ones being infinitely small circles in a plane. Finally, the differential and integral geometry of the multi-scale representation of the curve geometry under the flow is quantified by endowing the scale-space of curves with an appropriate connection, and calculating related torsion and curvature aspects. This multi-scale modern geometric analysis forms therewith an alternative for curve description methods based on entropy scale-space theories.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 31 (1999), S. 227-246 
    ISSN: 1573-1405
    Keywords: digital subtraction angiography ; motion correction ; registration ; matching ; warping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In clinical practice, Digital Subtraction Angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. The diagnostic relevance of the images is often reduced by artifacts which arise from the misalignment of successive images in the sequence, due to patient motion. In order to improve the quality of the subtraction images, several registration techniques have been proposed. However, because of the required computation times, it has never led to algorithms that are fast enough so as to be acceptable for integration in clinical applications. In this paper, a new approach to the registration of digital angiographic images is proposed. It involves an edge-based selection of control points for which the displacement is computed by means of template matching, and from which the complete displacement vector field is constructed by means of interpolation. The final warping of the images according to the calculated displacement vector field is performed real-time by graphics hardware. Experimental results with several clinical data sets show that the proposed algorithm is both effective and very fast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 18 (1996), S. 61-75 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract A representation of local image structure is proposed which takes into account both the image's spatial structure at a given location, as well as its “deep structure”, that is, its local behaviour as a function of scale or resolution (scale-space). This is of interest for several low-level image tasks. The proposed basis of scale-space, for example, enables a precise local study of interactions of neighbouring image intensities in the course of the blurring process. It also provides an extrapolation scheme for local image data, obtained at a given spatial location and resolution, to a finite scale-space neighbourhood. This is especially useful for the determination of sampling rates and for interpolation algorithms in a multilocal context. Another, particularly straightforward application is image enhancement or deblurring, which is an instance of data extrapolation in the high-resolution direction. A potentially interesting feature of the proposed local image parametrisation is that it captures a trade-off between spatial and scale extrapolations from a given interior point that do not exceed a given tolerance. This (rade-off suggests the possibility of a fairly coarse scale sampling at the expense of a dense spatial sampling large relative spatial overlap of scale-space kernels). The central concept developed in this paper is an equivalence class called the multiscale local jet, which is a hierarchical, local characterisation of the image in a full scale-space neighbourhood. For this local jet, a basis of fundamental polynomials is constructed that captures the scale-space paradigm at the local level up to any given order.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 21 (1997), S. 187-205 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This paper presents a general framework to generate multi-scale representations of image data. The process is considered as an initial value problem with an acquired image as initial condition and a geometrical invariant as “driving force” of an evolutionary process. The geometrical invariants are extracted using the family of Gaussian derivative operators. These operators naturally deal with scale as a free parameter and solve the ill-posedness problem of differentiation. Stability requirements for numerical approximation of evolution schemes using Gaussian derivative operators are derived and establish an intuitive connection between the allowed time-step and scale. This approach has been used to generalize and implement a variety of nonlinear diffusion schemes. Results on test images and medical images are shown.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...