Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 268 (1977), S. 171-174 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Platings of S. acrimycini protoplasts on regeneration medium after dilution in water (a, c) or medium P (b, d} at dilutions 10"1 (a, 6) and 102 (c, d}. Note the large colonies derived from osmotically stable non-protoplasted units, occurring in equal numbers on both series of plates, and the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 162 (1978), S. 307-317 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Numerous recombinants arose when protoplasts of S. coelicolor were treated with polyethylene glycol and regenerated on non-selective solid medium. In six-factor crosses, recombination frequencies of more than 10% (up to 17%) were routinely observed. This recombination did not require either of the known sex factors, SCP1 and SCP2. The proportion of multiple crossover classes was much higher than amongst recombinants produced by conjugation between mycelia. Analysis of the spatial distribution of crossovers in double and quadruple crossover recombinants showed only a slight tendency for crossovers to occur closer together than randomly on the complete linkage group. This suggests that genomes brought together by protoplast fusion are complete, or nearly so (in conjugation, in contrast, one genome is represented by a comparatively short fragment). Individual colonies arising from fused protoplasts did not contain different parental genomes without recombinants, but recombinants often occurred without parentals. Several recombinant genotypes often occurred in the same colony, showing a segregation of some, only, of the parental alleles. Complementary genotypes, parental or recombinant, did not occur in the same colony. It is postulated that complete genomes of fused protoplasts usually become fragmented and that crossing-over, often repeated, occurs between the fragments, to generate haploid recombinants. Analysis of fusions between protoplasts of four different genotypes indicated that the average number of protoplasts fusing together was low, but nevertheless appreciable numbers of fusions involved three or four genomes. Crossing-over between them produced recombinants inheriting markers from three or four parents. The generation of nearly random populations of recombinants between two or more parent strains by protoplast fusion under the conditions described appears to have simple applications in industrial and academic strain construction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Streptomyces lividans ISP 5434 contains four small high copy number plasmids: pIJ101 (8.9 kb), pIJ102 (4.0 kb), pIJ103 (3.9 kb) and pIJ104 (4.9 kb). The three smaller species appear to be naturally occurring deletion variants of pIJ101. pIJ101 and its in vivo and in vitro derivatives were studied after transformation into S. lividans 66. pIJ101 was found to be self-transmissible by conjugation, to elicit “lethal zygosis” and to promote chromosomal recombination at high frequency in both S. lividans 66 and S. coelicolor A3(2). A restriction endonuclease cleavage map of pIJ101 was constructed for 11 endonucleases; sites for five others were lacking. Many variants of pIJ101 were constructed in vitro by inserting DNA fragments determining resistance to neomycin, thiostrepton or viomycin, and having BamHI termini, into MboI or BclI sites on the plasmid, sometimes with deletion of segments of plasmid DNA. The physical maps of these plasmids were related to their phenotypes in respect of lethal zygosis and transfer properties. In vivo recombination tests between pairs of variant plasmids were also done. These physical and genetic studies indicated that determinants of conjugal transfer occupy less than 2.1 kb of the plasmid. A second segment is required for spread of the plasmid within a plasmid-free culture to produce the normal lethal zygosis phenotype: insertion of foreign DNA in this region caused a marked reduction in the diameter of lethal zygosis zones. The minimum replicon was deduced to be 2.1 kb or less in size; adjacent to this region is a 0.5 kb segment which may be required for stable inheritance of the plasmid. The copy number of several derivatives of pIJ101 in S. lividans 66 was between 40 and 300 per chromosome and appeared to vary with the age or physiological state of the culture. pIJ101 derivatives have a wide host range within the genus Streptomyces: 13 out of 18 strains, of diverse species, were successfully transformed. Knowledge of dispensable DNA segments and the availability of restriction sites for the insertion of DNA, deduced from the properties of plasmids carrying the E. coli plasmid pACYC184 introduced at various sites, was used in the construction of several derivatives of pIJ101 suitable as DNA cloning vectors. These were mostly designed to be non-conjugative and to carry pairs of resistance genes for selection. They include a bifunctional shuttle vector for E. coli and Streptomyces; a Streptomyces viomycin resistance gene of this plasmid is expressed in both hosts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...