Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 68 (1994), S. 100-108 
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Summary New Latitude Lumped Coefficients (LLC) of a geopotential model are defined as representing the principal differences of the radial distance to a satellite due to the model at single-orbit crossovers in an Exact Repeat Mission. In contrast with previously defined orbital lumped coefficients, the LLC here are dependent only on the geopotential order (without degree distinction) and the latitude. We examine discrepancies in altimetrically determined sea surface heights at over 30000 crossover positions of GEOSAT during its ERM, 1986–1989, after removal of many variable media and surface effects (Cheney et al., 1991) as well as initial condition orbit error. The mean of these discrepancies along well represented latitude bands in the southern hemisphere are used to determine the LLC errors for Goddard Earth Model T2, which was the reference for the GEOSAT sea surface heights. GEM T2 was derived from satelliteonly tracking data with good representation of the GEOSAT orbit. Relating the ”measured” LLC discrepancies to projections of commission error from the GEM T2 variance-covariance matrix, we find that — except for order 3 — GEM T2's performance is as expected. This test represents the first spectral calibration of a gravity model with independent, purely radial orbit data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 70 (1995), S. 146-157 
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Summary The geophysical interpretation of satellite tracking residuals generally ignores the filtering effect of initial orbit correction on the true errors of the model. While the filtered information is usually regarded as lost, knowing the spectral characteristics of the filter is a great aid in the detailed interpretation of residuals, especially of global data sets. In this regard, we derive the filter characteristics (admittances) of orbit correction in the presence of geopotential-caused trajectory errors. We then apply the filter to determine the likely power of the lost radial information in crossover differences of sea heights determined from satellite altimetry or in the latitude lumped coefficients derived from them. For example, we find that resonant geopotential information with periods longer than the corrected orbit's arc length is largely lost in residual crossover data. Results are given for GEOSAT, ERS-1 and TOPEX/Poseidon in their Exact Repeat Missions, using calibrated variancecovariance matrices of the harmonic geopotential coefficients of several recent Earth gravity models. To prove that filtering is important, we first employed a simple cut of all perturbing terms with periods longer than the general tracking period (4 days for GEOSAT and ERS-1, and 10 days for TOPEX). But the cut is too crude a method from a theoretical viewpoint, and thus, we developed two new filters. A comparison of their admittances explains the differences (and sometimes anomalous behaviour) between them and the cut. Many numerical examples (single-satellite crossover errors and latitude lumped coefficient errors, as projected from the variance-covariance matrices) are presented. This paper has been presented during the Panel on Satellite Dynamics, at COSPAR 1994, in Hamburg, Germany.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 220 (1968), S. 898-899 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The geopotential coefficients to (15, 15) used in the calculations are those reported by Kohnlein at the Fourteenth General Assembly of the International Union of Geodesy and Geophysics, October 1967. For terms with 15 〈20, the value suggested by Kaula1, Jim^ 0-07 x 10~6, was used. We did not ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 1 (1969), S. 252-270 
    ISSN: 1572-9478
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract An error analysis of resonant orbits for geodesy indicates that attempts to use resonance to recover high order geopotential coefficients may be seriously hampered by errors in the geopotential. This effect, plus the very high correlations (up to .99) of the resonant coefficients with each other and the orbital period in single satellite solutions, makesindividual resonant orbits of limited value for geodesy. Multiple-satellite, single-plane solutions are only a slight improvement over the single satellite case. Accurate determination of high order coefficients from low altitude resonant satellites requires multiple orbit planes and small drift-periods to reduce correlations and effects of errors of non-resonant geopotential terms. Also, the effects of gravity model errors on low-altitude resonant satellites make the use of tracking arcs exceeding two to three weeks of doubtful validity. Because high-altitude resonant orbits are less affected by non-resonant terms in the geopotential, much longer tracking arcs can be used for them.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 74 (1999), S. 231-242 
    ISSN: 1572-9478
    Keywords: satellite altimetry ; satellite dynamics ; radial orbit component/accuracy ; crossovers ; combinations of single‐ and dual‐satellite crossovers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We define combinations of dual‐ and single‐satellite crossover differences to isolate both stationary orbit‐geopotential and non‐geopotential errors in altimetry data. Specifically two types of combinations are found useful. While no combination of differences can resolve the full radial error of single or paired satellites, an approximation of the mean or geographically correlated error of the generally dominant lower orbit of a pair can be found from one kind (substitutions). (The variable part of the error is always available from the single‐satellite crossover differences.) A second useful combination type is found to yield no geopotential orbit error (zeros): uniquely, these can reveal errors in altimetry from imperfect media corrections as well as oceanographic changes in sealevel. The later circumstance is particularly important when the missions for a pair of satellites are disparate in time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 40 (1996), S. 77-110 
    ISSN: 1573-1626
    Keywords: satellite dynamics ; satellite (crossover) altimetry ; Earth gravity field models ; tests of accuracy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Summary The calibrated variance-covariance matrices of the harmonic geopotential coefficients of the recent combined model JGM 2 has been tested and verified by independent crossover altimetry from TOPEX/Poseidon and ERS 1 using the Latitude Lumped Coefficients in the southern oceans area. Although orbits are not yet available for these missions with other recent models for which error matrices have been released, by comparison with JGM 2 results and field differences we also confirm that the error matrices for the satellite model GRIM 4S4p and the combined data model JGM 3 are also generally valid. Projections of these matrices for a variety of inclinations show that many unused orbits of even moderate altitude (≈ 800 km) will still yield trajectory crossover errors at a level of many tens of centimeters even with the latest orbitgeopotential models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...