Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 15 (1980), S. 1207-1220 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A nonlinear analysis is carried out for the motion of the inviscid, incompressible fluid in a two-dimensional, rigid, open container which is subjected to forced sinusoidal pitching oscillation. Firstly, the problem is defined as a nonlinear initial-boundary value problem by the use of a governing differential equation and boundary conditions. Next, the problem is formulated in the form of a pseudo-variational principle, which provides a basis for our discretization. The finite element method and finite difference method are used spacewise and timewise, respectively. Due to the strong nonlinearity of the problem, an incremental method is used for the numerical analysis. Numerical results obtained by the present method are compared with solutions of the linear theory and experimental data. The difference between linear and nonlinear analysis has been clearly indicated.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 17 (1981), S. 1631-1646 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This paper deals with an application of the boundary element method to the analysis of nonlinear sloshing problems, namely nonlinear oscillations of a liquid in a container subjected to forced oscillations. First, the problem is formulated mathematically as a nonlinear initial-boundary value problem by the use of a governing differential equation and boundary conditions, assuming the fluid to be inviscid and incompressible and the flow to be irrotational. Next, the governing equation (Laplace equation) and boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by employing the Galerkin method. Two dynamic boundary condition is reduced to a weighted residual equation by employing the Galerkin method. Two equations thus obtained are discretized by the use of the finite element method spacewise and the finite difference method timewise. Collocation method is employed for the discretization of the integral equation. Due to the nonlinearity of the problem, the incremental method is used for the numerical analysis.Numerical results obtained by the present boundary element method are compared with those obtained by the conventional finite element method and also with existing analytical solutions of the nonlinear theory. Good agreements are obtained, and this indicates the availability of the boundary element method as a numerical technique for nonlinear free surface fluid problems.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...