Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: microfilamentous cytoskeleton ; actin binding proteins ; actin polymerization ; annealing ; non-muscle cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Gelsolin, a Ca++ activated, 90 kd actin binding protein, can regulate actin polymerization in polymorphonuclear leukocytes (PMNs) via severing of filaments to dissolve gels or by capping of filament ends to limit polymerization. In Triton-lysed PMNs, 30% of gelsolin is bound to the Triton-soluble F-actin (TSF) pool and none is bound to the Triton-insoluble F-actin (TIF) pool. Calcium-activated PMNs exhibit concurrent temporal and quantitative TIF growth and TSF and total F-actin loss. To determine if gelsolin plays a role in regulating TSF pool size, we monitored gelsolin-actin interactions and TIF, TSF and G-actin content at 5 second intervals in PMNs activated with the calcium ionophore, ionomycin. Actin pools were measured by NBDphallacidin binding and by gel scans and expressed relative to basal; gelsolin-actin interactions were measured as change in the amount of EGTA-resistant gelsolin:actin (G:A) complexes and by immunoblot quantification of gelsolin in actin pools. In basal PMNs, 33% of PMN gelsolin is bound in 1:1 EGTA-resistant G:A complexes and TSF and TIF retain 30% and 0% of PMN gelsolin, respectively. By 20 seconds after ionomycin addition, TSF decreases, TIF increases and a fraction of gelsolin repartitions from the TSF to the TIF pool. At maximum change (60 seconds), total F-actin (TIF + TSF) and TSF decrease and TIF increases by 25%; gelsolin is bound to both TSF and TIF (35% of total gelsolin in each pool), and 1:1 EGTA-resistant G:A complexes increase from 33% to 70%. No changes occur in cells activated by ionomycin in the absence of Ca++. The data show Ca++ activated TIF growth and TSF loss are temporally and quantitatively associated with an increase in the percent of gelsolin bound to actin and the translocation of gelsolin from TSF to TIF. This is unique, since no other PMN activator is known to repartition gelsolin into TIF actin. Further, the Ca++ activated initial increase in TIF concurrent with a fall in TSF without a change in total F-actin or G-actin content suggest that TIF grows initially only by TSF annealing/cross-linking to TIF. Gelsolin may regulate these events. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 21 (1992), S. 25-37 
    ISSN: 0886-1544
    Keywords: cytoskeleton ; human neutrophils ; actin binding proteins ; cytochalasins ; ultracentrifugation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Filamentous (F) actin is a major cytoskeletal element in polymorphonuclear leukocytes (PMNs) and other non-muscle cells. Exposure of PMNs to agonists causes polymerization of monomeric (G) actin to F-actin and activates motile responses. In vitro, all purified F-actin is identical. However, in vivo, the presence of multiple, diverse actin regulatory and binding proteins suggests that all F-actin within cells may not be identical. Typically, F-actin in cells is measured by either NBDphallacidin binding or as cytoskeletal associated actin in Triton-extracted cells. To determine whether the two measures of F-actin in PMNs, NBDphallacidin binding and cytoskeletal associated actin, are equivalent, a qualitative and quantitative comparison of the F-actin in basal, non-adherent endo-toxin-free PMNs measured by both techniques was performed. F-actin as NBD-phallacidin binding and cytoskeletal associated actin was measured in cells fixed with formaldehyde prior to cell lysis and fluorescent staining (PreFix), or in cells lysed with Triton prior to fixation (PostFix). By both techniques, F-actin in PreFix cells is higher than in PostFix cells (54.25 ± 3.77 vs. 23.5 ± 3.7 measured as mean fluorescent channel by NBDphallacidin binding and 70.3 ± 3.5% vs. 47.2 ± 3.6% of total cellular actin measured as cytoskeletal associated actin). These results show that in PMNs, Triton exposure releases a labile F-actin pool from basal cells while a stable F-actin pool is resistant to Triton exposure. Further characterizations of the distinct labile and stable F-actin pools utilizing NBDphallacidin binding, ultracentrifugation, and electron microscopy demonstrate the actin released with the labile pool is lost as filament. The subcellular localization of F-actin in the two pools is documented by fluorescent microscopy, while the distribution of the actin regulatory protein gelsolin is characterized by immunoblots with antigelsolin. Our studies show that at least two distinct F-actin pools coexist in endotoxin-free, basal PMNs in suspension: (1) a stable F-actin pool which is a minority of total cellular F-actin, Triton insoluble, resistant to depolymerization at 4°C, gelsolin-poor, and localized to submembranous areas of the cell; and (2) a labile F-actin pool which is the majority of total cellular F-actin, Triton soluble, depolymerizes at 4°C, is gelsolin-rich, and distributed diffusely throughout the cell. The results suggest that the two pools may subserve unique cytoskeletal functions within PMNs, and should be carefully considered in efforts to elucidate the mechanisms which regulate actin polymerization and depolymerization in non-muscle cells.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 28 (1994), S. 155-164 
    ISSN: 0886-1544
    Keywords: microfilamentous cytoskeleton ; actin binding proteins ; formyl peptides ; ionic extraction ; immunoblots ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: F-actin is a major component of the neutrophil (PMN) cytoskeleton. In basal PMNs, F-actin exists in two structurally and functionally distinct pools: Triton insoluble F-actin (TIF)-cold insensitive, not depolymerizable by dilution, and distributed in pseudopods and submembranous locations; and Triton soluble F-actin (TSF)-unstable in cold, diffusely distributed, and gelsolin enriched. The element(s) conferring these unique properties to the Triton insoluble F-actin pool are unknown, but logically include distinct actin regulatory proteins. To study the morphologic and functional determinants of the Triton insoluble F-actin pool, the distribution and quantity of three candidate regulatory proteins, α-actinin, tropomyosin (TM), and actin binding protein (ABP-280), were compared in F-actin (Triton insoluble and Triton soluble) and G-actin pools isolated from basal and chemotactic factor activated human PMNs in suspension, using immunoblots and ionic extraction. F-actin content was measured by NBDphallacidin binding and gel scans. The results show that: (1) α-actinin, actin binding protein 280, and tropomyosin are localized to TIF and excluded from TSF; (2) TM, α-actinin, and ABP 280 are required to stabilize fractions of Triton insoluble F-actin in PMNs; and (3) chemotactic factor activation results in release of a fraction of TM from the Triton insoluble F-actin pool in temporal association with F-actin polymerization in the Triton insoluble F-actin pool. Shifts in ABP 280 or α-actinin do not occur. The results suggest that TM, α-actinin, and ABP 280 provide structure to TIF and that TM release from TIF is involved in chemotactic factor induced actin polymerization in PMNs. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 19 (1991), S. 159-168 
    ISSN: 0886-1544
    Keywords: cytoskeleton ; morphology ; polymorphonuclear leukocytes ; human neutrophils ; scanning electron microscopy ; cytochalasins ; formyl peptides ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Neutrophils change shape from round to polar and sequentially polymerize/depolymerize actin following chemotactic peptide activation in suspension. To study the relationship between changes in F-actin content and shape we altered the kinetics/extent of actin polymerization and depolymerization with tBOC peptide, cytochalasin D (CD), and low-dose FMLP, and determined the effect of these alterations on the temporal sequence of changes in neutrophil shape. F-actin was measured by FACS analysis of NBDphallacidin-stained cells and expressed as relative fluorescent intensity (RFI) compared to control (RFI = 1.00). Shape was determined by scanning electron microscopy. FMLP causes serial polymerization/depolymerization of actin (RFI = 1.00 ± 0.04, 1.60 ± 0.21, 1.10 ± 0.18, and 1.05 ± 0.14) associated with four distinct shapes (round-smooth, round-ruffled, blebbed, and polar) noted at 0, 30, 90, 300 sec respectively. Since blebbed and polar shapes appear concurrent with depolymerization and following polymerization, we determined whether depolymerization is required for polarization of cells. The kinetics of depolymerization were: (1) accelerated by tBOC addition at 45 sec, and (2) slowed by high concentrations of FMLP (〉10-7 M) (300 sec RFI = 1.46). Neither change altered the time course of shape change. To determine whether duration of actin polymerization defines shape, polymerization was halted by addition of tBOC at 5, 10, 20, 30 sec after FMLP to block actin polymerization and shape was monitored at 300 sec. TBOC added 5-20 sec after FMLP limited neutrophil shape change to the blebbed form, while tBOC addition 30 sec following FMLP resulted in a polar shape at 300 sec. To determine whether the extent of actin polymerization affects the shape change sequence, polymerization was limited by (1) inhibition of polymerization with CD, (2) exposure of cells to low concentrations of FMLP ( 〈 10-9 M), and (3) interruption of polymerization with tBOC. Actin polymerization to RFI 〈 1.35-fold basal results in blebbed shape; polymerization 〉 1.35-fold basal yields polar shape. The data show: (1) the human neutrophil demonstrates intermediate shapes when activated by chemotactic peptide, (2) depolymerization of F-actin does not determine shape, and (3) blebbed shape appears when actin polymerizes for 〉5 sec; polar shape with polymerization ≥30 sec to RFI 〉 1.35-fold basal. The data suggest actin polymerization is required for, and extent of polymerization determines, the shape of human neutrophils.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...