Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1369-1600
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Chronic abuse of cocaine or alcohol is associated with structural, neuropathological and cognitive impairments that have been documented extensively. Little is known, however, about neurobiochemical changes in chronic substance abusers.We performed MRI and multi-slice brain proton magnetic resonance spectroscopic imaging (MRSI) to assess neuronal viability (via N-acetylaspartate (NAA)) and white matter metabolite status in 22 4-months-abstinent individuals dependent on crack cocaine only and on both crack cocaine and alcohol. Compared to 11 non-dependent controls we found (1) significantly lower NAA measures in the dorsolateral prefrontal cortex of the combined cocaine-dependent groups; (2) comparable spatial distribution and magnitude of these NAA effects for both cocaine-dependent groups; (3) higher choline-containing metabolites in frontal white matter of individuals dependent on both cocaine and alcohol; (4) absence of brain atrophy in both abstinent cocaine-dependent samples; and (5) partial recovery from prefrontal cortical NAA loss, primarily with abstinence from alcohol. The MRSI findings suggest preferential neuronal damage to the frontal cortex of both cocaine-dependent samples and gliosis in frontal white matter of individuals dependent on both alcohol and cocaine, conditions that persist for more than 4 months of abstinence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1459
    Keywords: Magnetic resonance spectroscopy ; Brain metabolism ; Neurological diseases ; Spectroscopic imaging ; Clinical neurochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In vivo nuclear magnetic resonance spectroscopy (MRS) of the human brain is a recently developed technique which allows to assay noninvasively in vivo key molecules of brain metabolism. After a review of the origin of the signals detected by phosphorus and proton MRS of human brain, the impact of MRS on clinical neurology is examined. MRS of the brain does not purport to be a metabolic “biopsy”, but unique applications for brain MRS are (1) quantitating the oxidative state of the brain and defining neuronal death, (2) assessing and mapping neuron damage, (3) evaluating membrane alterations, and (4) characterizing encephalopathies. In the near future brain MRS will be performed routinely after conventional MRI, as a valuable metabolic (and functional) complement to the anatomical evaluation of cerebral pathologies, particularly the toxic, metabolic and infectious encephalopathies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1920
    Keywords: Key words White matter signal changes ; Normal aging ; N-Acetylaspartate ; Ischemia ; Magnetic resonance spectroscopic imaging ; Magnetic resonance imaging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract White matter signal hyperintensities (WMSH) are commonly seen on MRI of elderly subjects. The purpose of this study was to characterize metabolic changes in the white matter of elderly subjects with extensive WMSH. We used water-suppressed proton (1H) magnetic resonance spectroscopic imaging (MRSI) to compare six subjects with extensive WMSH with eight age-matched elderly subjects with minimal or absent WMSH, and phosphorus (31P) MRSI to compare nine subjects with extensive WMSH and seven age-matched elderly subjects without extensive WMSH. Relative to region-matched tissue in elderly controls, extensive WMSH were associated with increased signal from choline-containing metabolites, no significant change of signal from N-acetylaspartate, and a trend to a decreased phosphomonoester (PME) resonance. These findings suggest that WMSH may be associated with an alteration of brain myelin phospholipids in the absence of axonal damage. There were no differences in energy phosphates, consistent with lack of ongoing brain ischemia. Within the group with extensive WMSH, PME resonance measures were significantly lower in WMSH than in contralateral normal-appearing white matter. These results provide information on pathophysiology of WMSH and a basis for comparison with WMSH in Alzheimer's disease, vascular dementia, multiple sclerosis, and other diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1920
    Keywords: White matter signal changes ; Normal aging ; N-Acetylaspartate ; Ischemia ; Magnetic resonance spectroscopic imaging ; Magnetic resonance imaging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract White matter signal hyperintensities (WMSH) are commonly seen on MRI of elderly subjects. The purpose of this study was to characterize metabolic changes in the white matter of elderly subjects with extensive WMSH. We used water-suppressed proton (1H) magnetic resonance spectroscopic imaging (MRSI) to compare six subjects with extensive WMSH with eight age-matched elderly subjects with minimal or absent WMSH, and phosphorus (31P) MRSI to compare nine subjects with extensive WMSH and seven age-matched elderly subjects without extensive WMSH. Relative to region-matched tissue in elderly controls, extensive WMSH were associated with increased signal from choline-containing metabolites, no significant change of signal fromN-acetylaspartate, and a trend to a decreased phosphomonoester (PME) resonance. These findings suggest that WMSH may be associated with an alteration of brain myelin phospholipids in the absence of axonal damage. There were no differences in energy phosphates, consistent with lack of ongoing brain ischemia. Within the group with extensive WMSH, PME resonance measures were significantly lower in WMSH than in contralateral normal-appearing white matter. These results provide information on pathophysiology of WMSH and a basis for comparison with WMSH in Alzheimer's disease, vascular dementia, multiple sclerosis, and other diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...