Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Nerve growth factor ; NGF mRNA ; Sciatic nerve crush ; Dorsal root ganglia ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The amount of nerve growth factor (NGF) in the L5, L6, and cervical dorsal root ganglia of rats was examined from 1 to 30 days after a unilateral crush lesion of the sciatic nerve and adjacent branches of the lumbar plexus at the level of the sciatic notch. Unilateral nerve crush produced increases in NGF content of lumbar ganglia at 1, 4, and 7–8 days after injury, with increased NGF mRNA at 4 and 7–8 days. Increases in NGF at 1 and 4 days were most pronounced on the unlesioned side while increases at days 7 and 8 were most pronounced on the lesioned side. NGF content increased in cervical ganglia of nerve-lesioned animals at 3 and 7 days after injury and in lumbar and cervical ganglia of sham-operated animals 3–5 days after surgery, with no comparable changes in NGF mRNA. Elevations of ganglionic NGF coincide temporally with some of the alterations in metabolism and morphology which occur in dorsal root ganglion neurons after sciatic nerve crush. However, the bilateral nature of increases in NGF demonstrates that the factor(s) producing the response is not restricted to ganglia axotomized by the injury. The data suggest that ganglionic NGF may be regulated by systemic factors, produced during stress or trauma, as well as by factors from the denervated target tissue and/or regenerating axons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Evidence is presented that the major protein components of the high molecular weight CNS myelin proteins designated as the Wolfgram protein doublet (W1 and W2) contain the enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (EC 3.1.4.37, CNP). CNP is a basic hydrophobic protein containing about 830 to 840 amino acid residues. When electrophoresed on SDS polyacrylamide gels, CNP appears as a protein doublet, separated by a molecular weight difference of about 2500–3000 in bovine, human, rat, guinea pig, and rabbit. A similar protein doublet has been identified as the Wolfgram proteins W2 and W1 in myelin and in the chloroform-methanol-insoluble pellet obtained from myelin. Moreover, the relative Coomassie blue staining intensity of the CNP2 plus CNPI protein doublet among the species examined was remarkably similar to that observed for electrophoresed myelin and chloroform-methanol-insoluble pellet derived from myelin. Antisera raised against purified bovine CNP recognized the W1 and W2 proteins isolated from bovine and human brain. The amino acid composition of pure bovine CNP is presented and compared with the compositions of several rat and bovine Wolfgram proteins obtained by other investigators. Our electrophoretic, compositional, and immunological data support the contention that the enzyme CNP is a major component of the Wolfgram protein doublet.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 7 (1978), S. 215-228 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effect of puromycin on spinal cord regeneration was studied following implantation into the site of spinal cord hemi- or transection of Gel-foam saturated with puromycin (1mM) in a saline carrier, implantation of Gel-foam sponge saturated with saline (carrier control), or lesion alone (lesion control). The spinal cords of 107 rats were studied with light and electron microscopy 7, 14, 30, 60 and 90 days postoperative (DPO). Spinal cord hemisected animals developed a dense cicatrix at the site of lesion replete with connective tissue, blood vessels, and myelinated and unmyelinated nerve fibres which could be traced to peripheral sources. Rostrally at the C.N.S.-cicatrix interface, there were reactive neuroglial cells, occasional nerve fibres and finger-like projections of spinal cord (due to cavitation lesions) which contained neuroglia, axons and dendrites. Implantation of saline in Gel-foam resulted in the same morphology as in hemisected animals except for increased lesion size due to mechanical factors and decreased cicatrix density during the first 30 DPO. Puromycin treatment resulted in a cicatrix with initial decreased cell density but which contained a new class of nerve fibres at 30 DPO. These nerve fibres were oriented in a rostro—caudal direction, were unmyelinated, 0.1–0.2 μm in diameter and had expanded smooth endoplasmic reticulum. Some of these nerve fibres were degenerating at 30 DPO and all were absent by 60 DPO. The puromycin-treated spinal cord within 200 μm rostral to the basal lamina contained nerve terminal conglomerates, which resembled boutons, in fascicles from 30–90 DPO (duration of experiment). Hemisection of the spinal cord by crushing 1-11/2 segments rostral to the site of puromycin implantation at 30 DPO resulted in degeneration of these nerve fibres in the cicatrix as well as the degeneration of nerve terminal conglomerates just rostral to the basal lamina. The regenerative capacity of the spinal cord is discussed in relationship to these findings.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...