Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Chalfont St. Giles, U.K. : Periodicals Archive Online (PAO)
    Journal of European studies. 1:4=4 (1971:Dec.) 313 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Chalfont St. Giles, U.K. : Periodicals Archive Online (PAO)
    Journal of European studies. 8:3=31 (1978:Sept.) 203 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 382 (1996), S. 534-536 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nautilus pompilius L. living at depths of 225-300 m were taken in baited traps from the sunken barrier reef south-east of Port Moresby, Papua New Guinea, and transported to the Motupore Island research station where they were acclimated to experimental temperatures (18 °C) which approximate ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 170 (2000), S. 261-268 
    ISSN: 1432-136X
    Keywords: Key words Nautilus ; Hypometabolism Hypoxia ; Blood gases ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Specimens of Nautilus pompilius were trapped at depths of 225–300 m off the sunken barrier reef south-east of Port Moresby, Papua New Guinea. Animals transported to the Motupore Island laboratory were acclimated to normal habitat temperatures of 18 °C and then cannulated for arterial and venous blood sampling. When animals were forced to undergo a period of progressive hypoxia eventually to encounter ambient partial pressure of oxygen (PO2) levels of ∼10 mmHg (and corresponding arterial PO2's of ∼5 mmHg), they responded by lowering their aerobic metabolic rates to 5–10% of those seen in resting normoxic animals. Coincident with this profound metabolic suppression was an overall decrease in activity, with brief periods of jet propulsion punctuating long periods of rest. Below ambient PO2 levels of 30–40 mmHg, ventilatory movements became highly periodic and at the lowest PO2 levels encountered, ventilation occasionally ceased altogether. Cardiac output estimated by the Fick equation decreased during progressive hypoxia by as much as 75–80%, and in the deepest hypometabolic states heart rates slowed to one to two cycles of very low amplitude per minute. By the end of 500 min exposure to ambient PO2 levels of 10 mmHg or less, the anaerobic end products octopine and succinate had increased significantly in adductor muscle and heart, respectively. Increased concentrations of octopine in adductor muscle apparently contributed to a small intracellular acidosis and to the development of a combined respiratory and metabolic acidosis in the extracellular compartment. On the other hand, increases in succinate in heart muscle occurred in the absence of any change in cardiac pHi. Taken together, we estimate that these anaerobic end products would make up less than 2% of the energy deficit arising from the decrease in aerobic metabolism. Thus, metabolic suppression is combined with a massive downregulation of systemic O2 delivery to match metabolic supply to demand.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1998), S. 273-280 
    ISSN: 1432-136X
    Keywords: Key words Amphibian ; Anoxia ; Hypometabolism Microcalorimetry ; Microdialysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Microcalorimetry is the only direct method for measuring moment-to-moment changes in whole-cell metabolism (as heat output) during anoxia. We have adapted this methodology, in conjunction with standard muscle isolation techniques, to monitor metabolic transitions in isolated frog (Rana temporaria) sartorius muscle during anoxia and recovery (reoxygenation). Anoxia (sustained 1 h, following 2 h progressive hypoxia) suppressed muscle heat output to 20% of the stable normoxic level. This effect was fully reversible upon reoxygenation. Metabolite profiles were consistent with other anoxia-tolerant vertebrates – most notably, adenosine triphosphate (ATP) content during anoxia and reoxygenation remained unchanged from normoxia (pre-anoxic control). In addition, the concentration of K+ ions ([K+]) in interstitial dialysates remained stable (2–3 mM) throughout anoxia and recovery. Interstitial [lactate−] increased slightly, in accord with anaerobiosis supporting suppressed metabolic rates during anoxia. The degree of anoxic suppression of metabolism observed is similar to other vertebrate models of anoxia tolerance. Furthermore, stable ATP concentrations and interstitial [K+] in the isolated tissue suggests that intrinsic mechanisms suppress metabolism in a manner that coordinates ATP supply and demand and avoids the severe ion imbalances that are characteristic of hypoxia-sensitive systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...