Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 12512-12519 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 1971-1979 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Bimolecular QRRK (Quantum Rice-Ramsperger-Kassel) analysis is a simple method for calculating rate constants of addition and recombination reactions, based on unimolecular quantum-RRK theory. Input parameters are readily derived, and rate constants and reaction branching can be predicted with remarkable accuracy. Such predictive power makes the method especially useful in developing mechanisms of elementary reactions. Furthermore, from the bimolecular QRRK equations, limiting forms of the rate constants in the limits of low and high pressure are developed. Addition/stabilization is pressure-dependent at low pressure but pressure-independent at high pressure, as is conventionally understood for simple decomposition, its reverse. In distinct contrast, addition with chemically activated decomposition has the opposite behavior: pressure independence at low pressure and pressure dependence [as (pressure)-1] at high pressure. The method is tested against data and illustrated by calculations for O + CO → CO2; for H + O2 → HO2 or O + OH; for H + C2H4 → C2H5 or C2H3 + H2; and for H + C2H3 → C2H4 or H2 + C2H2.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 19 (1987), S. 207-228 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Reactions which proceed through energized adducts, including radical recombinations, insertions, and addition to unsaturates, frequently exhibit unusual kinetic behavior. The branching ratios among various product channels are often complex functions of both temperature and pressure. Four such reactions involving methyl radicals are analyzed by combining chemical activation distribution functions with QRRK methods to predict rate constants for each channel. These include three oxidation paths, CH3 + O, CH3 + O2, CH3 + OH, and the addition reaction CH3 + C2H2. These predictions are compared to experiments wherever possible; generally, the agreement is quite satisfactory. Analysis of the energetics of the various reaction channels, using parameters which are readily available, provides a convenient framework for prediction. Suggested rate constants for the various channels for the four reactions are given at three pressures, 20, 760, and 7600 Torr, for the temperature range 300-2500 K. The approach used here can easily be applied to other reactions.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...