Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 91 (1994), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The mechanism of glutamine transport at the plasma membrane of sink tissue cells was investigated using isolated plasma membrane vesicles from roots of Ricinus communis L. var. sanguineous. Glutamine transport was found to be driven by both the pH gradient (ΔpH) and a membrane potential (ΔΨ) (alkaline and negative internal), which were created artificially across the plasma membrane. Glutamine wus accumulated 15–20-fold in the presence of both a ΔpH and ΔΨ. There appeared to be a direct pH effect on ΔPS-driven transport, as a higher rate of transport was observed at pH 5.5 than at pH 7.5. The ΔpH +ΔΨ -driven transport showed saturation kinetics with a Km of 287 μM. Altering the membrane potential changed the Vmax but had no effect on the Km of glutamine transport. These results are consistent with the presence of a proton-coupled, carrier-mediated system for glutamine uptake in Ricinus roots. A range of protein modifiers and transport inhibitors had limited effects on glutamine transport: highest inhibition uas observed with cytochalasin D. When glutamine transport was compared in plasma membrane vesicles isolated from the root lips of Ricinus and from the remainder of the root tissue a lower level of transport was observed in the root tips. A method for the solubilization and reconstitution of glutamine transport activity using the detergent CHAPS is also described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Amino acid transport ; Carrier (amino acids) ; Plasma membrane ; Ricinus (amino acid transport) ; Root (amino acid transport)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...