Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Hippocampus (man) ; Ammon's horn ; Non-pyramidal neuron ; Glutamic acid decarboxylase-immunocytochemistry ; Lipofuscin ; Pigmentoarchitectonics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of glutamic acid decarboxylase (GAD) immunoreactive neurons, fibres and punctae in sector CA 1 of the adult human Ammon's horn was studied in Vibratome sections (40 μm thick) of tissue obtained at surgery and autopsy. On light microscopical examination, the materal did not show pathological changes. The antibody was visualized by the unlabelled antibody enzyme method. GAD-immunoreactive neurons, fibres and punctae were present in all layers. Most immunoreactive neurons were located in the stratum pyramidale and stratum lacunosum. Their size ranged from 8 μm in the stratum lacunosum to about 50 μm in the stratum oriens. The somata offered a wide range of shapes, multiform to fusiform with the long axis aligned parallel or vertically to the alveus. All somata belonged to the heterogeneous group of non-pyramidal neurons. The dendrites either radiated in all directions or tended to run in two opposite directions. After bleaching the chromogen and staining for lipofuscin pigment granules and basophilic material, it turned out that within the stratum pyramidale all formerly GAD-immunoreactive neurons belonged to the group of lipofuscin-laden non-pyramidal neurons. Within the other layers, a few formerly GAD-immunoreactive neurons were devoid of lipofuscin pigment. The highest density of GAD-immunoreactive punctae was found in the stratum lacunosum. In addition to numerous GAD-immunoreactive punctae in the pyramidal layer and in the stratum radiatum there were thin GAD-immunoreactive fibres of varying length extending into various directions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 86 (1993), S. 433-438 
    ISSN: 1432-0533
    Keywords: Temporal lobe epilepsy ; Hippocampal sclerosis ; Ganglioglioma ; Hamartoma ; Amygdalo-hippocampectomy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract During the period between 1976 and 1990, 247 patients with pharmaco-resistant complex partial seizures and a documented unilateral epileptogenic area in the mediobasal temporal lobe underwent a selective amygdalo-hippocampectomy procedure at our institution. Biopsy specimens from 224 patients (91% of the total) were available for a retrospective histopathological and immunohistochemical review. The tissue specimens of 23 patients without evidence for a macroscopic lesion have been used for neurochemical studies and could not be evaluated histopathologically. The most common temporal lobe pathology were neoplasms in 126 patients, i.e. 56%. Tumor entities observed included 23 astrocytomas (18% of all tumors), 17 gangliogliomas (13%), 15 oligodendrogliomas (12%), 15 cases of glioblastoma multiforme (12%), 13 pilocytic astrocytomas (10%), 12 oligo-astrocytomas (10%), 11 anaplastic astrocytomas (9%) and 20 tumors of various other histologies. In 23 specimens (10%), small foci of oligodendroglia-like clear cells were found. The frequent association of these foci with low-grade gliomas or neural hamartomas raises the possibility that these structures may serve as precursor lesion for neuroepithelial tumors of the temporal lobe. In 98 cases, pathological changes of non-neoplastic origin were encountered. The most common diagnoses in this group included hippocampal gliosis/sclerosis (49 cases, 22%) and vascular malformations (20 cases, 9%). Hamartomas, i.e. focal accumulations of dysplastic neuro-glial cells were diagnosed in 14 patients (6%). In only four cases have we not been able to detect any microscopic pathology. These results indicate that a high proportion of pharmaco-therapy-resistent complex-partial seizures are caused by neoplasms of the temporal lobe, some of which appear to the strikingly overrepresented in this group of patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...