Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 112 (1996), S. 58-62 
    ISSN: 1432-1106
    Keywords: H-reflex ; Operant conditioning ; Plasticity ; Spinal cord ; Soleus muscle ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In response to an operant conditioning task, rats can gradually increase or decrease soleus H-reflex amplitude without change in background electromyographic activity or M response amplitude. Both increase (under the HRup mode) and decrease (under the HRdown mode) develop over weeks. The present study investigated reversal of conditioned H-reflex change. Following collection of control data, rats were exposed to one mode (HRup or HRdown) for 50 days, and then exposed to the opposite mode for up to 72 days. Rats responded to each mode exposure with gradual, mode-appropriate change in H-reflex amplitude. This finding is consistent with other evidence that H-reflex conditioning depends on spinal cord plasticity. The effects of exposure to the HRup (or HRdown) mode were not affected by whether exposure followed previous exposure to the HRdown (or HRup) mode. In accord with recent studies suggesting that HRup and HRdown conditioning have different spinal mechanisms, these results suggest that reversal of H-reflex change is due primarily to the superimposition of additional plasticity rather than to decay of the plasticity responsible for the initial change.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 627 (1991), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 627 (1991), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 807-843 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input from the periphery and the brain, this plasticity plays an important role in the acquisition and maintenance of motor skills and in the effects of spinal cord injury and other central nervous system disorders. The responses of the isolated spinal cord to sensory input display sensitization, long-term potentiation, and related phenomena that contribute to chronic pain syndromes; they can also be modified by both classical and operant conditioning protocols. In animals with transected spinal cords and in humans with spinal cord injuries, treadmill training gradually modifies the spinal cord so as to improve performance. These adaptations by the isolated spinal cord are specific to the training regimen and underlie new approaches to restoring function after spinal cord injury. Descending inputs from the brain that occur during normal development, as a result of supraspinal trauma, and during skill acquisition change the spinal cord. The early development of adult spinal cord reflex patterns is driven by descending activity; disorders that disrupt descending activity later in life gradually change spinal cord reflexes. Athletic training, such as that undertaken by ballet dancers, is associated with gradual alterations in spinal reflexes that appear to contribute to skill acquisition. Operant conditioning protocols in animals and humans can produce comparable reflex changes and are associated with functional and structural plasticity in the spinal cord, including changes in motoneuron firing threshold and axonal conduction velocity, and in synaptic terminals on motoneurons. The corticospinal tract has a key role in producing this plasticity. Behavioral changes produced by practice or injury reflect the combination of plasticity at multiple spinal cord and supraspinal sites. Plasticity at multiple sites is both necessary-to insure continued performance of previously acquired behaviors-and inevitable-due to the ubiquity of the capacity for activity-dependent plasticity in the central nervous system. Appropriate induction and guidance of activity-dependent plasticity in the spinal cord is an essential component of new therapeutic approaches aimed at maximizing function after spinal cord injury or restoring function to a newly regenerated spinal cord. Because plasticity in the spinal cord contributes to skill acquisition and because the spinal cord is relatively simple and accessible, this plasticity is a logical and practical starting point for studying the acquisition and maintenance of skilled behaviors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 90 (1992), S. 343-345 
    ISSN: 1432-1106
    Keywords: Motoneuron ; Motor axon ; Nerve conduction ; Development ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Axon conduction distance, conduction velocity, and conduction time were measured for individual triceps surae motoneurons in Sprague-Dawley rats weighing 230–630 g (i.e., age range 6–16 weeks). Both conduction distance (nerve length) and velocity were closely correlated with weight (r=0.95 and r=0.82, respectively). In contrast, conduction time did not change as weight increased nearly threefold. This striking constancy is probably due to a corresponding increase in axon diameter. It could contribute to maintenance of stable motor performance during rapid growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 97 (1993), S. 31-39 
    ISSN: 1432-1106
    Keywords: H-reflex ; Operant conditioning ; Plasticity ; Spinal cord ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Primates can gradually increase or decrease H-reflex amplitude in one leg when reward depends on that amplitude. The magnitude of change varies greatly from animal to animal. This study sought to define the factors that control this magnitude. It evaluated the influence of animal age, muscle size (absolute and relative), background electromyographic activity (EMG) level, M response amplitude, initial H-reflex amplitude, performance intensity, and behavior of the contralateral leg. Fifty-four animals (Macaca nemestrina) underwent operant conditioning of the triceps surae H-reflex in one leg (the trained leg). Twenty-eight were rewarded for larger H-reflexes (HRup animals), and 26 were rewarded for smaller H-reflexes (HRdown animals). In the HRup animals, H-reflex amplitude in the trained leg rose to an average final value of 177% of its initial amplitude. Magnitude of increase varied widely across animals. Nine animals rose to 120–140%, 11 to 160–240%, three to 300% or more, and five remained within 20% of initial amplitude. In the HRdown animals, H-reflex amplitude in the trained leg decreased to an average of 69% of initial amplitude. Magnitude of decrease varied widely. Five animals decreased to 20–40%, seven to 40–60%, six to 60–80%, and eight remained within 20% of initial amplitude. Animal age, as assessed by weight, markedly affected HRdown conditioning, but not HRup conditioning. Heavy HRdown animals (≥6 kg) were more successful than light HRdown animals (〈 6kg). Thirteen of 14 heavy animals and only five of 12 light animals decreased to less than 80% of initial amplitude. One heavy animal and seven light animals remained within 20% of initial amplitude. Established correlations between weight and age indicate that heavy animals were young adults, while many light animals were adolescents. This striking difference in HRdown performance was not attributable to weight-related differences in other factors. Initial H-reflex amplitude varied considerably across animals and affected the magnitude of change. In HRup animals, H-reflex amplitude in the trained leg tended to increase more if initial H-reflex amplitude was small, while in HRdown animals it decreased more if initial amplitude was large. The inter-animal variation in initial H-reflex amplitude was probably largely attributable to variation in Ia afferent excitation by the stimulating electrode pairs and to variation in motoneuron recruitment. Performance intensity, measured as trials per day, had no significant effect on the magnitude of change in either HRup or HRdown animals. Together with available human data, this finding suggests either that the chronic descending influence responsible for the gradual H-reflex change need only be present for a relatively brief period each day, or that it persists between periods of task performance. Final H-reflex amplitude in the control leg varied greatly across animals. It averaged 131% of its initial amplitude in HRup animals and 108% in HRdown animals. Within each group, final control leg amplitude did not correlate with the magnitude of change in the trained leg. Its wide variation and lack of correlation with final amplitude in the trained leg is consistent with evidence that operant conditioning of the H-reflex produces plasticity at multiple spinal and supraspinal sites both ipsilateral and contralateral to the trained leg.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6792
    Keywords: Sensorimotor cortex ; Mu rhythm ; Beta rhythm ; EEG ; Imagery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract People can learn to control the 8-12 Hz mu rhythm and/or the 18-25 Hz beta rhythm in the EEG recorded over sensorimotor cortex and use it to control a cursor on a video screen. Subjects often report using motor imagery to control cursor movement, particularly early in training. We compared in untrained subjects the EEG topographies associated with actual hand movement to those associated with imagined hand movement. Sixty-four EEG channels were recorded while each of 33 adults moved left- or right-hand or imagined doing so. Frequency-specific differences between movement or imagery and rest, and between right- and left-hand movement or imagery, were evaluated by scalp topographies of voltage and r spectra, and principal component analysis. Both movement and imagery were associated with mu and beta rhythm desynchronization. The mu topographies showed bilateral foci of desynchronization over sensorimotor cortices, while the beta topographies showed peak desynchronization over the vertex. Both mu and beta rhythm left/right differences showed bilateral central foci that were stronger on the right side. The independence of mu and beta rhythms was demonstrated by differences for movement and imagery for the subjects as a group and by principal components analysis. The results indicated that the effects of imagery were not simply an attenuated version of the effects of movement. They supply evidence that motor imagery could play an important role in EEG-based communication, and suggest that mu and beta rhythms might provide independent control signals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular neurobiology 5 (1985), S. 147-165 
    ISSN: 1573-6830
    Keywords: plasticity ; stretch reflex ; spinal reflex ; primate ; learning ; memory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The study of the substrates of memory in higher vertebrates is one of the major problems of neurobiology. A simple and technically accessible experimental model is needed. 2. Recent studies have demonstrated long-term adaptive plasticity, a form of memory, in the spinal stretch reflex (SSR). The SSR is due largely to a two-neuron monosynaptic arc, the simplest, best-defined, and most accessible pathway in the primate central nervous system (CNS). 3. Monkeys can slowly change SSR amplitude without a change in initial muscle length or alpha motoneuron tone, when reward is made contingent on amplitude. Change occurs over weeks and months and persists for long periods. It is relatively specific to the agonist muscle and affects movement. 4. The salient features of SSR adaptive plasticity, combined with clinical and laboratory evidence indicating spinal cord capacity for intrinsic change, suggest that SSR change eventually involves persistent segmental alteration. If this is the case, SSR plasticity should be a powerful model for studying the neuronal and synaptic substrates of memory in a primate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0197-8462
    Keywords: 60-Hz fields ; electric field ; magnetic field ; primate ; central nervous system ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We exposed pigtailed macaques (Macaca nemestrina) to electric (E) and magnetic (B) fields at strengths of 3 kV/m and 0.1 G, 10 kV/m and 0.3 G, and 30 kV/m and 0.9 G for three 21 day segments. These three exposure segments were preceded and followed by 21 day sham exposure segments. Additional animals received only sham exposure for five 21 day segments. Detailed description of the exposure chamber and field generation apparatus is given. We evaluated measures of animal well-being, including weight, blood chemistry, blood cell counts, and performance on a simple motor task, and performed postmortem examinations. Reliable and consistent results were obtained throughout data collection. None of the measures evaluated was significantly affected by E- and B-field exposures. Data obtained during actual exposure segments were not distinguishable from those obtained during the initial and final sham exposure segments, nor were they different from data obtained from the sham-exposed animals. Thus, field exposure had no apparent effects on general health or performance.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 10 (1989), S. 289-301 
    ISSN: 0197-8462
    Keywords: nonhuman primates ; cerebrospinal fluid biogenic amine metabolites ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We exposed Macaca nemestrina (pig-tailed macaques) to electric (E) and magnetic (B) fields ranging in intensity from 3 kV/m and 0.1 G to 30 kV/m and 0.9 G for three 21-day (d) periods. Experimental animals were exposed to sham E and B fields for two 21-d periods, one prior to and one following actual exposure to E and B fields, resulting in a total of five 21-d periods. Control animals were exposed to sham E and B fields for the entire 105-d interval. At the end of each 21-d period cerebrospinal fluid (CSF) was obtained by lumbar puncture and analyzed for concentrations of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), metabolites of dopamine and serotonin neurotransmitters, respectively, by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Results are based on an examination of six experimental and four control animals.Exposure to E and B fields at all strengths was associated with a significant decline in CSF concentrations of both HVA and 5-HIAA when statistical comparisons were made against values obtained at the end of the preexposure interval. However, HVA returned to preexposure levels during the postexposure period, while 5-HIAA did not. No significant change in the concentrations of HVA or 5-HIAA was noted in the control animals.These results strongly suggest that exposure of the nonhuman primate to E and B fields can significantly affect specific biochemical estimates of nervous system function. These effects may involve alterations either in neuronal activity or in the activity of enzymes that catabolize the neurotransmitters.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...