Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Adenosine, by acting on adenosine A1 and A2A receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A1 inhibiting and activation of A2A receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary to changes in glutamate neurotransmission, in view of evidence for a preferential colocalization of A1 and A2A receptors in glutamatergic nerve terminals. By using in vivo microdialysis techniques, local perfusion of NMDA (3, 10 µm), the selective A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS 21680; 3, 10 µm), the selective A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 300, 1000 µm), or the non-selective A1-A2A receptor antagonist in vitro caffeine (300, 1000 µm) elicited significant increases in extracellular levels of dopamine in the shell of the nucleus accumbens (NAc). Significant glutamate release was also observed with local perfusion of CGS 21680, CPT and caffeine, but not NMDA. Co-perfusion with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV; 100 µm) counteracted dopamine release induced by NMDA, CGS 21680, CPT and caffeine. Co-perfusion with the selective A2A receptor antagonist MSX-3 (1 µm) counteracted dopamine and glutamate release induced by CGS 21680, CPT and caffeine and did not modify dopamine release induced by NMDA. These results indicate that modulation of dopamine release in the shell of the NAc by A1 and A2A receptors is mostly secondary to their opposite modulatory role on glutamatergic neurotransmission and depends on stimulation of NMDA receptors. Furthermore, these results underscore the role of A1 vs. A2A receptor antagonism in the central effects of caffeine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The development of many autoimmune diseases has been etiologically linked to exposure to infectious agents. For example, a subset of patients with a history of Salmonella infection develop reactive arthritis. The persistence of bacterial antigen in arthritic tissue and the isolation of Salmonella ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 12-21 
    ISSN: 0887-3585
    Keywords: non-covalent interaction ; DNA ; peptides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: DNA-histone interaction facilitates packaging of huge amounts of DNA in the confined space of the nucleus. The importance of this interaction underscores the need for new analytical techniques to acquire a better understanding of nuclear dynamics. Electrospray-ionization mass spectrometry made it possible to investigate non-covalently-bound biopolymers. We are enlarging the scope of available analytical tools by studying non-covalent interaction between single and double stranded DNA and peptides with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The interaction is an ionic one, between the negatively charged sugar-phosphate backbone of single stranded DNA and positively charged side chains of Arg- and Lys-rich peptides as demonstrated by Vertes' group1 with the dipeptides Arg-Lys and His-His. We replicated Lecchi and Pannell's work,2 which showed that double stranded DNA could be seen by MALDI using 6-aza-2-thiothymine (ATT) as matrix. We tried various peptides and found that as was demonstrated in DNA-histone interaction, a certain ratio and arrangement of basic residues was needed in order to generate ionic binding between DNA and peptide. We tested various single and double stranded DNA with the peptide of choice, and found that other variables such as pH value of solution, ionic strength, and matrix system did play a role. Proteins Suppl. 2:12-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1076-5174
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: High-performance matrix-assisted laser desorption/ionization (MALDI) using 7 T Fourier transform mass spectrometry (FTMS) was investigated for peptide amino acid sequence analysis. Two synthetic peptides representative of the type which would be displayed by major histocompatibility complex molecules from tumor cells were investigated by MALDI/FTMS. Molecular ions of the two 9-amino acids peptides were detected with resolving power of 8000-17 900 and mass measurement accuracy between 8 and 81 ppm for the all 12C isotope ions. An ultra-high resolution spectrum (RP 300 000) for the molecular ion of one of the two peptides was obtained. Structurally useful sequence information was obtained by use of surface-induced dissociation (SID) of the molecular ion species. Interestingly, SID of a sodium-attached peptide molecular ion resulted in the production of numerous sodium-attached sequence ions.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...