Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Photosynthesis research 38 (1993), S. 315-321 
    ISSN: 1573-5079
    Schlagwort(e): Photosystem II ; oxygen evolution ; S-states ; quinones
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Flash-induced oxygen evolution and many related processes in thylakoids of oxygenic organisms are modulated with period four by the S-state transitions associated with the oxygen evolving system of Photosystem II (PS II). To analyze these phenomena, we have interpreted the S-state model on the basis of the charge accumulating activities on both sides of PS II-4 charges on the donor side and 2 charges on the acceptor side. This results in the recognition of two parallel reaction center cycles V and W of PS II function (V.P. Shinkarev and C.A. Wraight (1993) Proc Natl Acad Sci USA 90: 1834–1838). The description of damping of the period four oscillations is here extended to include kinetic sources of misses in both cycles. Such misses arise in reaction centers (RCs) in which back reaction between P+ and QA - occurs before the electron transfer equilibria on the donor and acceptor sides of the RC are reached. These are in addition to misses which are determined by reaction centers (RCs) that are inactive at the time of the flash due to the presence of either P+ or QA - according to the electron transfer equilibria on the donor and acceptor sides of the RC. Using known or estimated values of the equilibrium and rate constants for donor and acceptor side reactions of the RC, this provides a natural and quantitatively reasonable description of the flash number dependence of oxygen evolution and other period four modulated processes of PS II. The estimated miss factors are different for both cycles V and W and are dependent on flash number and pH. Estimates based on existing data show that miss factors of the first type (kinetic) are dominant at low pH, while those of the second type (equilibrium) are dominant at high pH.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Photosynthesis research 26 (1990), S. 195-201 
    ISSN: 1573-5079
    Schlagwort(e): Photosynthesis ; reaction centers ; quinones ; dicyclohexylcarbodiimide ; Rb. sphaeroides
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The effect of dicyclohexylcarbodiimide (DCCD) on electron transfer in the acceptor quinone complex of reaction centers (RC) from Rhodobacter sphaeroides is reported. DCCD covalently labelled the RC over a wide concentration range. At low concentrations (〈10 μM) the binding was specific for the L subunit. At relatively high concentrations (〉100 μM) DCCD accelerated the rate of charge recombination of the P+QB - state, consistent with a decrease in the equilibrium constant between QA -QB and QAQB -. At similar concentrations, in the presence of cytochrome c as exogenous donor, turnover of the RC was inhibited such that only three cytochromes were oxidized in a train of flashes. Both these inhibitory effects were fully reversed by dialysis, indicating that stable covalent binding was not involved. Possible mechanisms of action are discussed in terms of the putative role of specific residues in proton transfer and protonation and release of quinol from the RC.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1573-5079
    Schlagwort(e): Photosystem II ; oxygenevolution ; S-states ; fluorescence
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Photosystem II (PS II) of plants and cyanobacteria, which catalyzes the light-induced splitting of water and the release of oxygen, is the primary source of oxygen in the earth atmosphere. When activated by short light flashes, oxygen release in PS II occurs periodically with maxima after the third and the seventh flashes. Many other processes, including chlorophyll (Chl) t a fluorescence, are also modulated with period of four, reflecting their sensitivity to the activity of Photosystem II. A new approach has been developed for the analysis of the flash-induced fluorescence of Chl t a in plants, which is based on the use of the generalized Stern–Volmer equation for multiple quenchers. When applied to spinach thylakoids, this analysis reveals the presence of a new quencher of fluorescence whose amplitude is characterized by a periodicity of four with maxima after the third and the seventh flashes, in phase with oxygen release. The quencher appears with a delay of ≈ 0.5 ms followed by a rise time of 1.2–2 ms at pH 7, also in agreement with the expected time for oxygen evolution. It is concluded that the quencher is a product of the reaction leading to the oxygen evolution in PS II. The same quenching activity, maximal after the third flash, could be seen in dark adapted leaves, and provides the first fully time-resolved measurement of the kinetics of the oxygen evolution step in the leaf. Thus, the non-invasive probe of Chl t a fluorescence provides a new and sensitive method for measuring the kinetics of oxygen evolution with potential for use in plants and cyanobacteria t in vivo.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Photosynthesis research 61 (1999), S. 181-191 
    ISSN: 1573-5079
    Schlagwort(e): chromatophores ; collodion film ; electric potential ; fluorescence ; NSOM ; thylakoids
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Many different methods have been developed in recent years to gain insight into the structure of proteins, membranes, organelles and cells. Here we demonstrate the application of near-field scanning optical microscopy (NSOM) for analysis of the structures of typical photosynthetic membrane objects such as chloroplasts and thylakoids from spinach and chromatophores from purple bacteria. To our knowledge, this is the first report of application of NSOM to imaging chromatophores from photosynthetic bacteria and intact thylakoids from higher plants. NSOM has the ability to measure optical signals originating from the sample with a spatial resolution better than conventional optical microscopy. The main advantage of near-field optical microscopy, besides the improved lateral optical resolution, is the simultaneously acquired topography. We have applied NSOM to thylakoids obtained by osmotic shock of chloroplasts. Swollen thylakoids had average diameters of 0.8–1 micron and heights of 0.05–0.07 micron. We also describe the use of fluorescent dyes for the analysis of structures resulting from fusion of photosynthetic bacterial chromatophores with lipid impregnated collodion membranes. The structures formed after fusion of chromatophores to the collodion film have diameters ranging from 0.2 to 10 microns and heights from 0.01 to 1 micron. The dual functionality (optical and topographical), high spatial resolution, and the possibility to work with wet samples and under water, make NSOM a useful method for examining the structures, sizes, and heterogeneity of chromatophore and thylakoid preparations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 0730-2312
    Schlagwort(e): reaction center ; Rhodopseudomonas sphaeroides ; ubiquinone ; herbicide activity ; herbicide resistance ; herbicide specificity ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: A select group of herbicides that inhibit photosystem II also act at the acceptor side of the reaction center (RC) from the photosynthetic bacterium Rhodopseudomonas sphaeroides, with much the same relative specificity as in plants. These include the triazines and some phenolic compounds. The proposal that herbicides inhibit the electron transfer from the primary quinone (QA) to the secondary quinone (QB) by competing for the secondary quinone binding site - the B-site -  [5], is tested here with terbutryn, the most potent of the triazines. Competition between terbutryn and ubiquinone (Q-10) was observed using the kinetics of the back-reaction as a measure of inhibition. The model includes binding equilibria before and after flash activation. The binding constants for the preflash (dark) equilibria, for reaction centers in 0.14% lauryl dimethylamine-N-oxide (LDAO), were KiD = 0.8 μM terbutryn, KqD = 2 μM Q-10; both are detergent-concentration dependent. After flash activation, binding equilibrium is not fully restored on the time scale of the back-reaction because terbutryn unbinds slowly. This gives rise to biphasic decay kinetics from which koff for terbutryn was estimated to be 3 sec-1. Titrations of the rate of the slow back reaction indicated that the post-flash equilibrium is less sensitive to inhibitor, in a manner that is independent of the much stronger binding of the semiquinone, QB-, and indicative of a direct effect of the redox state of QA on the affinity of the B-site for ligands. However, the effects on KiL and KqD could not be separated: either KiL 〉 KiD or KqD 〈 KqD. Some triazine-resistant mutants have been isolated and are described. All appear to be herbicide binding site mutants. Whole cells and photosynthetic membrane vesicles (chromatophores) exhibit a 10-50-fold increase in resistance to triazines due, in large part, to an increase in the rate of unbinding (koff). The modifications of the binding site appear to diminish the affinity of the B-site for ubiquinone as well as terbutryn. It is concluded that bacterial RCs are a useful model for the study of herbicide activity and specificity.
    Zusätzliches Material: 3 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...