Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 59 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Although pharmacological stimulation of a wide variety of transmitter receptors triggers phosphoinositide (PI) turnover, little is known about the type of synaptic activity required to activate this system. To investigate this question, we have used primary cultures of embryonic cortical neurons, which develop functional glutamate and GABA synapses during maturation in vitro. Mature cultures display spontaneous synaptic activity that is totally suppressed by tetrodotoxin (TTX). PI turnover, assayed by the lithium-sensitive accumulation of [3H]CDP-diacylglycerol, was readily detected under basal conditions and was abolished by TTX. Increased excitatory synaptic activity induced by picrotoxin, an antagonist of GABAA receptor-mediated inhibition, further stimulated PI turnover. Similar results were obtained when PI turnover was assayed using [3H]inositol labeling. With either assay, the magnitude of synaptically induced PI turnover was comparable to maximal responses produced by muscarinic receptor stimulation. Although a component of the spontaneous synaptic currents is sensitive to N-methyl-D-aspartate (NMDA)-preferring glutamate receptor antagonists, blockade of NMDA receptors did not affect PI turnover associated with synaptic transmission. To assess the time course of synaptically mediated PI turnover, the amplitude and duration of spontaneous synaptic currents were reduced by lowering the extracellular Ca2+ concentration from 2.25 to 0.5 mM, a maneuver that suppresses basal PI turnover. Increases in PI turnover were detected as early as 5 min following restoration of the extracellular Ca2+ concentration to 2.25 mM. Taken together, these findings indicate that activation of the PI system is associated with physiological levels of glutamatergic synaptic transmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 1 (1929), S. 17-20 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 18 (1926), S. 73-75 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 25 (1933), S. 140-141 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    New Haven, Conn., etc. : Periodicals Archive Online (PAO)
    Religious Education. 4:2 (1909:June) 237 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract A novel material, self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) has been previously developed in this laboratory. It consists of high-strength PMMA fibers embedded in a matrix of PMMA derived from the fibers. As a composite material, uniaxial SRC-PMMA has been shown to have greatly improved flexural, tensile, fracture toughness and fatigue properties when compared to unreinforced PMMA. Previous work examined one empirically defined processing condition. This work systematically examines the effect of processing time and temperature on the thermal properties, fracture toughness and fracture morphology of SRC-PMMA produced by a hot compaction method. Differential scanning calorimetry (DSC) shows that composites containing high amounts of retained molecular orientation exhibit both endothermic and exothermic peaks which depend on processing times and temperatures. An exothermic release of energy just above Tg is related to the release of retained molecular orientation in the composites. This release of energy decreases linearly with increasing processing temperature or time for the range investigated. Fracture toughness results show a maximum fracture toughness of 3.18 MPa m1/2 for samples processed for 65 min at 128°C. Optimal structure and fracture toughness are obtained in composites which have maximum interfiber bonding and minimal loss of molecular orientation. Composite fracture mechanisms are highly dependent on processing. Low processing times and temperatures result in more interfiber/matrix fracture, while higher processing times and temperatures result in higher ductility and more transfiber fracture. Excessive processing times result in brittle failure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...