Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-14
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-09
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-14
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 72 (1986), S. 23-28 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebellum ; Selective vulnerability ; Neural grafts ; Protein synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Prolonged insulin-induced hypoglycemia causes widespread loss of neurons and permanent brain damage with irreversible coma. Although the deprivation of carbohydrate stores affects all brain regions, the breakdown of energy metabolism and cessation of protein synthesis occur predominantly in the cerebral cortex, caudoputamen and hippocampus. The cerebellum, brain stem and hypothalamus are largely resistant. Following transplantation of the cerebellar anlage of rat fetuses (day 15 of gestation) into the caudoputamen of adult rats, the grafts were allowed to differentiate for a period of 8 weeks. The host animals were then subjected to 30 min of severe hypoglycemia with isoelectric EEG (‘coma’). In contrast to the surrounding vulnerable brain structures, protein synthesis was fully preserved within the cerebellar transplant. Grafting of fetal forebrain cortex to the same location did not result in escape from hypoglycemic cell injury. This indicates that resistance to hypoglycemia is part of the programmed differentiation of the cerebellum and develops irrespective of its location and functional integration within the nervous system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0533
    Keywords: Gerbil ; Ischemia ; Selective vulnerability ; Protein synthesis ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Regional cerebral protein synthesis was investigated in the Mongolian gerbil during recovery from forebrain ischemia produced by bilateral common carotid artery occlusion for 5 min. At various recirculation periods up to 72 h animals received a single dose ofl-(3,5-3H)tyrosine and were killed 30 min later. Brains were processed for autoradiography using the stripping film technique. During the initial 30 min of recirculation autoradiographs revealed an almost complete inhibition of protein synthesis in all forebrain structures with the exception of the medio-dorsal thalamic nuclei. Between 30 min and 12 h of recirculation amino acid incorporation was completely restored in neurons of the cerebral cortex, basal ganglia, hippocampal CA3 and CA4 zones and the dentate gyrus. In CA1, early (90-min postischemia) and progressive recovery of a few irregularly dispersed neurons was observed, but the vast majority of pyramidal cells never regained their normal biosynthetic activity. Between 3 and 6 h of recirculation CA1 neurons showed faint labeling, followed by a secondary deterioration resulting in complete lack of incorporation within 12 h after restoration of blood flow. Autoradiographs at all subsequent time points exhibited persistent inhibition of protein synthesis in CA1 until neuronal necrosis occurred 2–3 days later. Thus, in contrast to ischemia-resistant cell populations with rapid progressive and complete restoration of protein synthesis, hippocampal neurons undergoing delayed necrosis are characterized by an early incomplete recovery immediately followed by a secondary persistent inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1424
    Keywords: Key words: Ion transport — Na+/H+ exchange — NHE — Membrane fluidity — Benzyl alcohol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. This report presents a study of the effects of the membrane fluidizer, benzyl alcohol, on NHE isoforms 1 and 3. Using transfectants of an NHE-deficient fibroblast, we analyzed each isoform separately. An increase in membrane fluidity resulted in a decrease of ≈50% in the specific activities of both NHE1 and NHE3. Only V max was affected; K Na was unchanged. This effect was specific, as Na+, K+, ATPase activity was slightly stimulated. Inhibition of NHE1 and NHE3 was reversible and de novo protein synthesis was not required to restore NHE activity after washout of fluidizer. Inhibition kinetics of NHE1 by amiloride, 5-(N,N-dimethyl)amiloride (DMA), 5-(N-hexamethyl)amiloride (HMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were largely unchanged. Half-maximal inhibition of NHE3 was also reached at approximately the same concentrations of amiloride and analogues in control and benzyl alcohol treated, suggesting that the amiloride binding site was unaffected. Inhibition of vesicular transport by incubation at 4°C augmented the benzyl alcohol inhibition of NHE activity, suggesting that the fluidizer effect does not solely involve vesicle trafficking. In summary, our data demonstrate that the physical state of membrane lipids (fluidity) influences Na+/H+ exchange and may represent a physiological regulatory mechanism of NHE1 and NHE3 activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1424
    Keywords: Key words: Intestinal absorption — C2bbe — Protein kinase A — Protein kinase C — Calcium signaling — Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Until recently, studies to characterize the intestinal epithelial Na+/H+ exchangers had to be done in nonepithelial, mutated fibroblasts. In these cells, detection of any Na+/H+ exchange activity requires prior acid loading. Furthermore, most of these experiments used intracellular pH changes to measure NHE activity. Because changes in pH i only approximate Na+/H+ exchange activity, and may be confounded by alterations in buffering capacity and/or non-NHE contributions to pH regulation, we have used 22[Na] unidirectional apical to cell uptake to measure activities specific to NHE2 or NHE3. Furthermore, we performed these measurements under basal, nonacid-stimulated conditions to avoid bias from this nonphysiological experimental precondition. Both brush border NHEs, when expressed in the well-differentiated, intestinal villuslike Caco-2 subclone, C2bbe (C2), localize to the C2 apical domain and are regulated by second messengers in the same way they are regulated in vivo. Increases in intracellular calcium and cAMP inhibit both isoforms, while phorbol ester affects only NHE3. NHE2 inhibition by cAMP and Ca++ involves changes to both K Na and V max . In contrast, the same two second messengers inhibit NHE3 by a decrease in V max exclusively. Phorbol ester activation of protein kinase C alters both V max and K Na of NHE3, suggesting a multilevel regulatory mechanism. We conclude that NHE2 and NHE3, in epithelial cells, are basally active and are differentially regulated by signal transduction pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...