Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Most plant pathogenic bacteria adopt the type III secretion systems to secrete virulence factors and/or avirulence gene products, which trigger the plant hypersensitive response (HR) and the oxidative burst with hydrogen peroxide (H2O2) as the main component. However, the soil-borne plant pathogen Agrobacterium tumefaciens uses the type IV secretion pathway to deliver its oncogenic T-DNA that causes crown gall tumours on many plant species. A. tumefaciens does not elicit a typical HR on those plants. Here, we report that inactivation of one of A. tumefaciens catalases (which converts H2O2 to H2O and O2) by a transposon insertion highly attenuated the bacterial ability to cause tumours on plants and to tolerate H2O2 toxicity, but not the bacterial viability in the absence of exogenous H2O2. This provides the first genetic evidence that the Agrobacterium–plant interaction involves a plant defence response, such as H2O2 production, and that catalase is a virulence factor for a plant pathogen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 42 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium–plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA–gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA–gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA–gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2222
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Interleukin-8 (IL-8) has been shown to be a chemotactic factor for neutrophils, T-lymphocytes and eosinophils, but it is unknown whether the IL-8-induced inflammatory cell accumulation into the airways can cause the bronchial hyperresponsiveness (BHR) characteristic of asthma. IL-8 at a dose of 0.5 or 5μg/kg was administered intranasally to guinea-pigs twice a week for 3 weeks. One day after the last administration, animals were anesthetized and artificially ventilated through tracheal cannula and lateral pressure at the cannula (Pao) was measured as an overall index of airway responses to increasing concentrations of inhaled histamine (25, 50, 100, and 200 μg/ml). The IL-8 treatment significantly enhanced bronchial responsiveness to histamine in a dose-dependent manner (ANOVA P 〈 0.01). The provocative concentration of histamine causing a 100% increase in Pao (PC100) at a dose of 0.5 and 5μg/kg of IL-8 was 68.1 (Gsem 1.12) and 35.6 (Gsem 1.25) μg/ml, respectively. The latter was significantly (P 〈 0.01) lower than that in control animals treated with PBS (93.3 [Gsem, 1.14] μg/ml)- The IL-8 treatment also induced a significant influx of neutrophils, but not eosinophils, in bronchoalveolar lavage (BAL) fluid (18.3 ± 8.8 and 30.6 ± 8.3% in animals treated with 0.5 and 5 μg/kg, respectively, of IL-8 vs 3.6 ± 0.7% in phosphate buffered saline-(PBS)-treated animals). Furthermore, we examined the effect of the thromboxane receptor antagonist S-1452 (0.01 or 0.1 mg/kg, i.p. 24 and 1 h before anesthesia) on this IL-8 induced BHR. S-1452 significantly inhibited the BHR dose-dependently (ANOVA P 〈 0.001). PC100 was 94.0 (Gsem 1.19), 137.4 (Gsem 1.17) and 43.0 (Gsem 1.24) μg/ml with S-1452 at doses of 0.01 and 0.1mg/ml and saline, respectively. We conclude that IL-8 causes BHR and airway neutrophil inflammation, and that thromboxane A2 is important in the development of BHR induced by IL-8.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 31 (1992), S. 1068-1070 
    ISSN: 0031-9422
    Keywords: Labiatae ; Salvia chinensis ; depsides ; isosalvianolic acid C.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 31 (1992), S. 1068-1070 
    ISSN: 0031-9422
    Keywords: Labiatae ; Salvia chinensis ; depsides ; isosalvianolic acid C.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...