Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: . Blastocystis hominis, a parasite of the human intestine, has recently been positioned within Stramenopiles by the small subunit rRNA phylogeny. To further confirm its phylogenetic position using multiple molecular sequence data, we determined the nucleotide sequences putatively encoding small subunit ribosomal RNA, cytosolic-type 70-kDa heat shock protein, translation elongation factor 2, and the non-catalytic ‘B’ subunit of vacuolar ATPase of B. hominis (HE87–1 strain). Moreover, we determined the translation elongation factor 2 sequence of an apicomplexan parasite, Plasmodium falciparum, that belongs to alveolates. The maximum likelihood analyses of small subunit rRNA and cytosolic-type 70-kDa heat shock protein clearly demonstrated that B. hominis (HE87–1 strain) is positioned within Stramenopiles, being congruent with the previous small subunit rRNA analysis, including the sequences of B. hominis (Nand strain) and a Blastocystis isolate from guinea pig. Although no clear resolution among major eukaryotic groups was obtained by the individual phytogenies based on the four molecules analyzed here, a combined analysis of various molecules, including these, clearly indicated that Blatocystis/stramenopiles are the closest relatives of alveolates.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1432
    Schlagwort(e): Ribosomal RNA ; Eukaryotic kingdoms ; Phylogeny ; Maximum-likelihood method
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Phylogenetic trees among eukaryotic kingdoms were inferred for large- and small-subunit rRNAs by using a maximum-likelihood method developed by Felsenstein. Although Felsenstein's method assumes equal evolutionary rates for transitions and transversions, this is apparently not the case for these data. Therefore, only transversiontype substitutions were taken into account. The molecules used were large-subunit rRNAs fromXenopus laevis (Animalia), rice (Plantae),Saccharomyces cerevisiae (Fungi),Dictyostelium discoideum (Protista), andPhysarum polycephalum (Protista); and small-subunit rRNAs from maize (Plantae),S. cerevisiae, X. laevis, rat (Animalia), andD. discoideum. Only conservative regions of the nucleotide sequences were considered for this study. In the maximum-likelihood trees for both large- and small-subunit rRNAs, Animalia and Fungi were the most closely related eukaryotic kingdoms, and Plantae is the next most closely related kingdom, although other branching orders among Plantae, Animalia, and Fungi were not excluded by this work. These three eukaryotic kingdoms apparently shared a common ancestor after the divergence of the two species of Protista,D. discoideum andP. polycephalum. These two species of Protista do not form a clade, andP. polycephalum diverged first andD. discoideum second from the line leading to the common ancestor of Plantae, Animalia, and Fungi. The sequence data indicate that a drastic change occurred in the nucleotide sequences of rRNAs during the evolutionary separation between prokaryote and eukaryote.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular evolution 22 (1985), S. 160-174 
    ISSN: 1432-1432
    Schlagwort(e): Evolution of hominoids ; Phylogenetic position ofAustralopithecus afarensis ; Interspecies transfer of mitochondrial DNA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized leastsquares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3±11.7, 13.3±1.5, 10.9±1.2, 3.7±0.6, and 2.7±0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the bipedal creatureAustralopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a protochimpanzee after the former had developed bipedalism.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular evolution 26 (1987), S. 132-147 
    ISSN: 1432-1432
    Schlagwort(e): Branching dates ; Human-ape splitting ; η-Globin pseudogene ; Mitochondrial DNA ; Constancy of molecular evolution ; Bootstrap method
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Divergence dates among primates were estimated by molecular clock analysis of DNA sequence data. A molecular clock of η-globin pseudogene was calibrated by setting the date of divergence between Catarrhini and Platyrrhini at 38 million years (Myr) ago. The clock gave dates of 25.3±2.4, 11.9±1.7, 5.9±1.2, and 4.9±1.2 Myr ago (± refers to standard error) for the separation of rhesus monkey, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. In placing confidence intervals of the estimates in a robust way, a bootstrap method was used. The 95% confidence intervals are 20.5–29.5, 9.0–14.8, 4.1–7.8, and 3.1–7.0 Myr ago for the separation of rhesus monkey, orangutan, gorilla, and chimpanzee, respectively. By a molecular clock dating of the Prosimii-Anthropoidea splitting, it was suggested that the evolutionary rate of the η-globin gene was high early in primate evolution and subsequently decreased in the line of Anthropoidea. And, by a relative rate test using bootstrap sampling, the possibility of further decrease of the rate (more than 10%) in the line of Hominoidea compared with that of Cercopithecoidea was suggested. Therefore, the above dating of the splittings within Hominoidea may be biased slightly toward younger dates. On the other hand, mitochondrial DNA (mtDNA) seems to have evolved in mammals with a more uniform rate than the η-globin gene. The ratio of the dates of orangutan splitting to chimpanzee splitting is larger for the mtDNA clock than that for the η-globin clock, suggesting the possibilities of mt-DNA introgression among the early hominids and the early African apes, and/or of mtDNA polymorphism within the common ancestral species of orangutan and the African apes that obscures the date of the true species separation of orangutans.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular evolution 20 (1984), S. 77-85 
    ISSN: 1432-1432
    Schlagwort(e): Error cascade ; Evolutionary rate ; tRNA ; Ribosomal protein ; Mitochondria
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Evolutionary constraints operating on animal mitochondrial tRNA were estimated to be reduced to about 1/30 of those that apply to cytoplasmic tRNA. In the nuclear-cytoplasmic system, an effect of a mutation tRNA is likely to be amplified through positive feedback loops consisting of DNA polymerases, RNA polymerases, ribosomal proteins, aminoacyl-tRNA synthetases, tRNA processing enzymes, and others. This amplification phenomenon is called an “error cascade” and the loops that cause it are called “error loops.” The freedom of evolutionary change of cytoplasmic tRNA is expected to be severely restricted to avoid the error cascade. In fact, cytoplasmic tRNA is highly conserved during evolution. On the other hand, in the animal mitochondrial system, all of the proteins involved in error loops are coded for in the nuclear genome and imported from the cytoplasm, and accordingly the system is free from the error cascade. The difference in constraints operating on animal tRNA between cytoplasm and mitochondria is attributed to the presence or absence of error loops. It is shown that the constraints on mitochondrial tRNA in fungi are not as relaxed as those in animals. This observation is attributed to the presence of an error loop in fungal mitochondria, since at least one protein of the mitochondrial ribosome is coded for in the mitochondrial genome of fungi. The evolutionary rates of proteins involved in the processing of genetic information are discussed in relation to the error cascade.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Origins of life and evolution of the biospheres 6 (1975), S. 219-227 
    ISSN: 1573-0875
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie
    Notizen: Abstract The entropy of the amino acid sequences coded by DNA is considered as a measure of diversity or variety of proteins, and is taken as a measure of evolution. The DNA or m-RNA sequence is corsidered as a stationary second-order Markov chain composed of four kinds of bases. Because of the biased nature of the genetic code table, increase of entropy of amino acid sequences is possible with biased nucleotide sequence. Thus the biased DNA base composition and the extreme rarity of the base doubletC p G of higher organisms are explained. It is expected that the amino acid composition was highly biased at the days of the origin of the genetic code table, and the more frequent amino acids have tended to get rarer, and the rarer ones more frequent. This tendency is observed in the evolution of hemoglobin, cytochrome C, fibrinopeptide, immunoglobulin and lysozyme, and protein as a whole.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...