Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 2 (1971), S. 64-82 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Interaction between sensible heat and water vapor diffusion in the lower atmosphere leads to the necessity of solving two simultaneous turbulent diffusion equations. This solution is obtained by the construction of Green's function which when incorporated in the boundary conditions produces two integral equations. These are solved by transformation into two algebraic equations by means of the Laplace Transformation. The results show how for a simple steady-state case, sensible heat and water vapor transfer and also the water surface temperature depend on the meteorological conditions and the rate of change of energy content of the water body. Due to advection, the water surface temperature and the turbulent fluxes vary in the downwind direction. However, for practical calculations of the mean evaporation or heat transfer, the error introduced by the use of an average temperature is usually quite small and negligible.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 7 (1974), S. 21-37 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The two-layer system of an atmosphere over water bodies is reduced to a single-layer problem. Values of the interfacial quantities, such as the friction velocity, the surface velocity, the angles, α and β, between the surface shear stress and the geostrophic wind velocity and the surface wind velocity, respectively, and the surface roughness, all of which depend upon external parameters, such as the geostrophic wind and stratifications, are obtained. The geostrophic drag coefficient C d, the geostrophic wind coefficient C f, and the angles α, and β, of the turbulent flow at the sea-air interface are functions of a dimensionless number, mfG/kg, with S 1 and S 2 as two free stratification parameters. The surface roughness is uniquely determined from the geostrophic wind rather than from the wind profile in the boundary layer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 10 (1976), S. 521-522 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 9 (1975), S. 381-390 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A steady-state, three-dimensional turbulent diffusion equation describing the concentration distribution of an air pollutant from an elevated point source in the lower atmosphere is solved analytically. The same formulation can be used to obtain solutions from line, area or other kinds of sources. The solution is developed for the cases in which the velocity, vertical and lateral diffusivities are given by the power law. The model preserves the beauty of analytical solution without sacrificing much on the accuracy of approximating the velocity and eddy diffusivities. Methods of evaluating the parameters, which are required for the model applications, are discussed. Results indicate that the ratio of the plume width to the plume length increases with decreasing stability and with increasing source height. These consequences are in response to the variations of the size of eddies in the vertical direction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Computational geosciences 2 (1998), S. 151-170 
    ISSN: 1573-1499
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Computer Science
    Notes: Abstract We present an approach developed to compute chemical equilibrium and its corresponding reactive chemical transport when dominating precipitated species (DPS) exist. In computing chemical equilibrium, most models take the concentrations or activities of component species and precipitated species as the master variables. However, when the amount of a precipitated species is much larger than those of other species, small computational errors on this DPS concentration might introduce large errors on the concentrations of other species and would cause non‐mass‐conserved numerical results. To deal with the existence of DPS, we pick as master variables the concentration change, rather than the concentration, of DPS to compute chemical equilibrium. Since the concentration changes of DPS will no longer be much larger than the concentrations of other species in determining equilibrium, our approach is able to provide correct numerical results. We also employ the modified total analytical concentrations, rather than the total analytical concentrations, of aqueous components as the dependent variables in presenting and solving corresponding transport equations. Several examples are given to reveal the numerical problems associated with DPS and to demonstrate the success of our approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 1 (1981), S. 207-223 
    ISSN: 0271-2091
    Keywords: Numerical Solution ; Integrated Compartment Method ; Fluid Dynamics ; Incompressible Flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The most common numerical methods that are used by physical scientists to approximate partial differential equations employ finite differences and/or finite elements. In addition, compartment analyses have been adopted by ecological system analysts to simulate the evolution of processes governed by differential equations without spatial derivatives. An integrated compartment method (ICM) is proposed to combine the merits of these three numerical techniques. The basic procedures of the ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. These procedures are applied to the Navier-Stokes equations to yield the computational algorithm from which computer programs can be coded. The computer code is designed to solve one-, two-, or three-dimensional problems as desired. The program is applied to two simple cases: wake formation behind an obstacle in a channel and circulatory motion of a body of fluid in the square cavity. These preliminary applications have shown promising results.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 41 (1998), S. 499-526 
    ISSN: 0029-5981
    Keywords: multigrid method ; finite element discretization ; matrix consistency ; grid generation ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Increasing the efficiency of solving linear/linearized matrix equations is a key point to save computer time in numerical simulation, especially for three-dimensional problems. The multigrid method has been determined to be efficient in solving boundary-value problems. However, this method is mostly linked to the finite difference discretization, rather than to the finite element discretization. This is because the grid relationship between fine and coarse grids was not achieved effectively for the latter case. Consequently, not only is the coding complicated but also the performance is not satisfactory when incorporating the multigrid method into the finite element discretization. Here we present an approach to systematically prepare necessary information to relate fine and coarse grids regarding the three-dimensional finite element discretization, such that we can take advantage of using the multigrid method. To achieve a consistent approximation at each grid, we use A2h=I2hhAhIh2h and b2h=I2hh bh, starting from the composed matrix equation of the finest grid, to prepare the matrix equations for coarse grids. Such a process is implemented on an element level to reduce the computation to its minimum. To demonstrate the performance, this approach has been used to adapt two existing three-dimensional finite element subsurface flow and transport models, 3DFEMWATER and 3DLEWASTE, to their multigrid version, 3DMGWATER and 3DMGWASTE, respectively. Two example problems, one for each model, are considered for illustration. The computational result shows that the multigrid method can help solve the example problems very efficiently with our presented modular setting. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 41 (1998), S. 587-615 
    ISSN: 0029-5981
    Keywords: Lagrangian-Eulerian methods ; three-dimensional transport equations ; adaptive local zooming ; peak/valley capturing ; slave point ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: We present a Lagrangian-Eulerian method with adaptively local ZOOMing and Peak/valley Capturing approach (LEZOOMPC), consisting of advection-diffusion decoupling, backward particle tracking, forward particle tracking, adaptively local zooming, peak/valley capturing, and slave point utilization, to solve three-dimensional advection-diffusion transport equations. This approach and the associated computer code, 3DLEZOOMPC, were developed to circumvent the difficulties associated with the Exact Peak Capturing and Oscillation-Free (EPCOF) scheme, developed earlier by the authors, when it was extended from a one-dimensional space to a three-dimensional space. The accurate results of applying EPCOF to solving two one-dimensional benchmark problems under a variety of conditions have shown the capability of this scheme to eliminate all types of numerical errors associated with the advection term and to keep the maximum computational error to be within the prescribed error tolerance. However, difficulties arose when the EPCOF scheme was extended to a multi-dimensional space mainly due to the geometry. To avoid these geometric difficulties, we modified the EPCOF scheme and named the modified scheme LEZOOMPC. LEZOOMPC uses regularly local zooming for rough elements and peak/valley capturing within subelements to resolve the problems of tetrangulation and boundary source as well as to preserve the shape of concentration distribution. In addition, LEZOOMPC employs the concept of ‘slave points’ to deal with the compatibility problem in the diffusion zooming of the Eulerian step. As a result, not only is the geometrical problem resolved, but also the spirit of EPCOF is retained. Application of 3DLEZOOMPC to solving an advection-decay and a boundary source benchmark problems indicates its capability in solving advection transport problems accurately to within any prescribed error tolerance by using mesh Courant number ranging from 0 to infinity. Demonstration of using 3DLEZOOMPC to solve an advection-diffusion benchmark problem shows how the numerical solution is improved with the increment of the diffusion zooming factors. 3DLEZOOMPC could solve advection-diffusion transport problems accurately by using mesh Peclet numbers ranging from 0 to infinity and very large time-step size. The size of time-step is related to both the diffusion coefficients and mesh sizes. Hence, it is limited only by the diffusion solver. The application of this approach to a two-dimensional space has been demonstrated earlier in the paper entitled ‘A Lagrangian-Eulerian method with adaptively local zooming and peak/valley capturing approach to solve two-dimensional advection-diffusion transport equations’. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...