Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 4165-4169 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have developed a novel microchannel plate (MCP) by introducing new materials and process technologies. The key features of our MCP are summarized as follows: (i) bulk alumina as a substrate, (ii) the channel location defined by a programmed-hole puncher, (iii) thin film deposition by electroless plating and/or sol–gel process, and (iv) an easy fabrication process suitable for mass production and a large-sized MCP. The characteristics of the resulting MCP have been evaluated with a high input current source such as a continuous electron beam from an electron gun and Spindt-type field emitters to obtain information on electron multiplication. In the case of a 0.28 μA incident beam, the output current enhances ∼170 times, which is equal to 1% of the total bias current of the MCP at a given bias voltage of 2600 V. When we insert a MCP between the cathode and the anode of a field emission display panel, the brightness of luminescent light increases 3–4 times by multiplying the emitted electrons through pore arrays of a MCP. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 4091-4095 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Enormously high secondary electron emission yields under electric field are observed from MgO deposited on carbon nanotubes. The yields reach a value as high as 15 000 and are strongly dependent upon the bias voltage applied to the sample. The creation of the electric field across the MgO film after bombardment of primary electrons is considered as one of key features, since positive charges are generated at the surface by departure of secondary electrons. Subsequent bombarding electrons produce other secondary electrons inside the MgO film, then the liberated secondaries are accelerated towards the surface under the strong field. Under this condition, the secondary electrons gain sufficient energy to create further electrons by impact ionization. The process continues until an equilibrium avalanche is established. To elucidate the earlier explanations, the kinetic energy spectra of secondary electrons are measured by an energy analyzer at various bias voltages in MgO/carbon nanotube samples. The analysis of spectral results with the energy band diagram gives us strong evidence for the suggested mechanism. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 5994-5998 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dissociation of hydrogen atoms from the methylene group of cyclopentadiene (CP) and indene (ID) excited with a 193 nm photon has been studied by hydrogen atom laser induced fluorescence. The rate of dissociation of IND was 7.4×106 s−1 but that of CP was too fast to measure. The ratio of H atoms to D atoms generated from 5-deuteriocyclopentadiene (5-dCP) was 3.91±0.46. Rice–Ramsberger–Kassel–Marcus theory was used to calculate the rates of dissociation of CP and 5-dCP. The quantum yield for dissociating H atoms from CP was 0.85±0.07. The ejected H atoms have a Maxwell velocity distribution with temperatures which are equal to the vibrational temperatures, 3690 and 2479 K for CP and IND, respectively. The most important result of the work is this confirmation of an earlier finding on a different set of molecules that the translational temperature of the fragments after the dissociation is equal to the vibrational temperature before the dissociation. This is explained by the assumption that the motion of the fast, light hydrogen atom is partly decoupled from that of the heavier, slower atoms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 4548-4553 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Mercury atoms were excited to the 6 3P1 state with a pulsed laser and a lamp at 253.7 nm in the presence of H2, D2, HD, and mixtures of these gases. The hydrogen atom reaction products were detected by vacuum ultraviolet (VUV) laser induced fluorescence. The ratio of yields of the two body channel (mercury hydride and a hydrogen atom) and the three body channel [Hg(6 1S0) and two hydrogen atoms] were determined by combining the H/D atom ratios and a literature value of the HgD/HgH ratio from reaction with HD. Assuming that the sum of the two yields is unity, the yield of the two body channel is for H2 0.63±0.15, for D2 0.79±0.11, and for HD 0.10±0.02 (HgH+D) and 0.65±0.03 (HgD+H). The average kinetic energies calculated by combining these yields with the literature data on internal energy release in the mercury hydride molecules agree with the average kinetic energies measured from the Doppler broadened fluorescence excitation curves. When the E vector of the exciting polarized light was rotated there was no effect on the hydrogen atom spectrum proving that the hydrogen atom velocity distribution is isotropic. When the mercury atoms were excited with circularly polarized light to the J=1, MJ=1 state, the hydrogen atoms exhibited no spin polarization. Electron spin resonance (ESR) signals observed when irradiating a mixture of Hg and hydrogen molecules were shown by isotopic effects to be due to hydrogen atoms dissociated from mercury hydride molecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 3281-3283 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Secondary electron emission yields (SEEYs) were measured for silicon oxides which were thermally grown on doped silicon substrates. Generally, SEEY curves can be described by the so-called universal curve, i.e., one hump with a monotonic increase (decrease) before (after) the hump. However, we found that our thick oxide layers exhibited double-hump shaped SEEY curves instead of single-hump shaped curves. Additionally, we were able to change the shape of a SEEY curve with two humps to a curve with one hump, or vice versa, by varying the experimental parameters. This change in curve shape can be explained if we consider the competition between the oxide layer thickness and the electron's penetration depth, the charge accumulation due to emission of secondary electrons, and charge traps created during thermal oxidation at the same time. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 1716-1718 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol–gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...