Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 10608-10620 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The interference between time-dependent recurrences in the quantum autocorrelation function is eliminated by carrying out orthogonal transformations in the time-energy domain. The time-dependent phases and amplitudes of the individual recurrences are compared with the results obtained from simple classical trajectory calculations. Using classical trajectories we calculate a two-dimensional survival probability which is defined in the time and energy domain. The two-dimensional survival probability provides the phase and enables to distinguish between overlapping recurrences. Remarkable agreement between the quantum and classical results is obtained for the initial Gaussian wave packet which is preferentially located either in the regular or in the chaotic regimes in the classical phase space of the Pullen–Edmonds Hamiltonian (nonlinearly coupled two harmonic oscillators). A novel method which enables to determine the molecular potential energy surfaces from a measured absorption or emission spectra is proposed. The method employs the matching of Wigner transforms of individual quantum recurrences with the two-dimensional classical survival probability. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 10761-10766 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Photolysis of the HCl molecule surface solvated on clusters with 2 to 12 argon atoms is investigated by means of quantum molecular dynamics simulations. Two basic questions are addressed: (i) How does the cage effect change upon increasing the size of the cluster, and (ii) how can caging be influenced by an infrared (IR) excitation of HCl hindered rotation (libration) prior to ultraviolet (UV) photolysis. The efficiency of caging is discussed in terms of measurable quantities. In the time domain, temporary populations of the trapped hydrogen atom are monitored, while in the energy domain short-lived vibrational resonances are observed as a fine structure in the hydrogen kinetic energy distribution. While caging is negligible for the smallest clusters, it becomes more efficient upon increasing the cluster size, and for 12 solvent atoms the cage effect is already very strong. Finally, it is shown that while in the ground state the hydrogen atom points essentially toward the rare gas cluster, in excited librational states hydrogen is directed mostly away from argon atoms. As a consequence, caging of the photodissociating hydrogen atom in the case of a surface solvated HCl molecule can be efficiently "turned off" by librational preexcitation. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 5974-5983 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The Cl–HCl radical complex is investigated by a combination of accurate ab initio quantum chemical methods for the evaluation of the three lowest electronic potential energy surfaces and nonadiabatic couplings between them, and quantum evaluation of vibronic states using wave function propagation in imaginary time within a close coupling scheme. The sensitivity of the vibronic energies on the quality of the potential surfaces is clearly demonstrated. Moreover, it is shown that nonadiabatic couplings between the three lowest electronic states play an important role, especially for highly excited vibronic states. Since under experimental conditions the complex is prepared in a superposition of excited vibronic states close to the dissociation limit, the inclusion of nonadiabatic effects is crucial for a quantitative interpretation of future higher resolution spectroscopic experiments. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 6246-6256 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Under standard conditions reaction yields are connected with terms like free energy differences and thermal distributions. However, many modern experimental techniques, such as supersonic beam expansion or matrix isolation, deal with cryogenic temperatures and isolated reactants in inert clusters or solid matrices. Under these conditions the photochemical reaction mechanism is in many cases strongly dependent on the shape of delocalized initial vibrational or rotational wave functions of the reactants which can be employed for an efficient reaction yield control. Here, we apply, using quantum molecular dynamics simulations, such a scheme to the rotational control of photolysis of the HCl molecule embedded in an icosahedral Ar12 cluster. First, the HCl molecule is preexcited into a specific low lying rotational level. Depending on the rotational state, the hydrogen probability is enhanced in different directions within the cluster. In a second step, the HCl molecule is photolyzed by an UV pulse. The rapidly dissociating hydrogen atom then reaches primarily either the holes in the solvent shell or the argon atoms, depending on the rotational preexcitation. Starting either from the ground or from the first totally symmetric excited rotational states, the direct dissociation and the delayed process accompanied by a temporary trapping of the hydrogen atom have very different relative yields. As a consequence, differences up to a factor of 5 in the temporary population of the hydrogen atom inside the cluster after the first hydrogen-cage collision are observed. In the energy domain a significant difference in the structure of the kinetic energy distribution spectra, connected with the existence of short-lived vibrational resonances of the hydrogen atom, is predicted. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-26
    Description: The method of symmetry adapted wavepackets (SAWP) to solve the time-dependent Schrödinger equation for a highly symmetric potential energy surface is introduced. The angular dependence of a quantum-mechanical wavepackets is expanded in spherical harmonics where the number of close-coupled equations for the corresponding radial functions can be efficiently reduced by symmetry adaption of the rotational basis using the SWAP approach. Various techniques to generate symmetry adapted spherical harmonics (SASHs) for the point groups of highest symmetry (octahedral, icosahedral) are discussed. The standard projection operator technique involves the use of Wigner rotation matrices. Two methods to circumvent numerical instabilities occuring for large azimuthal quantum numbers are suggested. The first is based on a numerical scheme which employs Gaussian integrations yielding exact and stable results. The second is a recursive algorithm to generate higher order SASHs accurately and efficiently from lower order ones. The paper gives a complete set of ``seed functions'' generated by projection techniques which can be used obtain SASHs for all irreducible representations of the octahedral and icosahedral point groups recursively.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...